shark::IParameterizable< VectorType > Class Template Reference

Top level interface for everything that holds parameters. More...

#include <shark/Core/IParameterizable.h>

+ Inheritance diagram for shark::IParameterizable< VectorType >:

Public Types

typedef VectorType ParameterVectorType
 

Public Member Functions

virtual ~IParameterizable ()
 
virtual ParameterVectorType parameterVector () const
 Return the parameter vector.
 
virtual void setParameterVector (ParameterVectorType const &newParameters)
 Set the parameter vector.
 
virtual std::size_t numberOfParameters () const
 Return the number of parameters.
 

Detailed Description

template<class VectorType = RealVector>
class shark::IParameterizable< VectorType >

Top level interface for everything that holds parameters.

This interface is inherited by AbstractModel for unified access to the parameters of models, but also by objective functions and algorithms with hyper-parameters.

the type of parameter vector can be chosen, e.g. to change precision or port parameters to GPU

Definition at line 53 of file IParameterizable.h.

Member Typedef Documentation

◆ ParameterVectorType

template<class VectorType = RealVector>
typedef VectorType shark::IParameterizable< VectorType >::ParameterVectorType

Definition at line 55 of file IParameterizable.h.

Constructor & Destructor Documentation

◆ ~IParameterizable()

template<class VectorType = RealVector>
virtual shark::IParameterizable< VectorType >::~IParameterizable ( )
inlinevirtual

Definition at line 56 of file IParameterizable.h.

Member Function Documentation

◆ numberOfParameters()

template<class VectorType = RealVector>
virtual std::size_t shark::IParameterizable< VectorType >::numberOfParameters ( ) const
inlinevirtual

Return the number of parameters.

Reimplemented in shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >, shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelClassifier< InputType >, AbstractWeightedTrainer< KernelClassifier< InputType > > >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int, MissingFeaturesKernelExpansion< InputType > >, shark::AbstractLinearSvmTrainer< InputType >, shark::KernelBudgetedSGDTrainer< InputType, CacheType >, shark::EpsilonSvmTrainer< InputType, CacheType >, shark::KernelSGDTrainer< InputType, CacheType >, shark::LassoRegression< InputVectorType >, shark::LDA, shark::LinearRegression, shark::LinearSAGTrainer< InputType, LabelType >, shark::LogisticRegression< InputVectorType >, shark::OneClassSvmTrainer< InputType, CacheType >, shark::Classifier< Model >, shark::Classifier< detail::BaseNearestNeighbor< InputType, unsigned int > >, shark::Classifier< KernelExpansion< InputType > >, shark::Classifier< LinearModel< RealVector > >, shark::Centroids, shark::ClusteringModel< InputT, OutputT >, shark::ClusteringModel< InputT, RealVector >, shark::ClusteringModel< InputT, unsigned int >, shark::HierarchicalClustering< InputT >, shark::CMACMap, shark::ConcatenatedModel< VectorType >, shark::Conv2DModel< VectorType, ActivationFunction >, shark::DropoutLayer< VectorType >, shark::ARDKernelUnconstrained< InputType >, shark::DiscreteKernel, shark::GaussianRbfKernel< InputType >, shark::KernelExpansion< InputType >, shark::ModelKernel< InputType >, shark::MonomialKernel< InputType >, shark::GaussianTaskKernel< InputTypeT >, shark::NormalizedKernel< InputType >, shark::PointSetKernel< InputType >, shark::PolynomialKernel< InputType >, shark::ProductKernel< InputType >, shark::ProductKernel< MultiTaskSample< InputTypeT > >, shark::ScaledKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::LinearModel< InputType, ActivationFunction >, shark::LinearModel< RealVector >, shark::NeuronLayer< NeuronType, VectorType >, shark::Normalizer< VectorType >, shark::OneVersusOneClassifier< InputType, VectorType >, shark::PoolingLayer< VectorType >, shark::RBFLayer, shark::ResizeLayer< VectorType >, shark::CARTree< LabelType >, shark::BinaryLayer, shark::BipolarLayer, shark::GaussianLayer, and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >.

Definition at line 71 of file IParameterizable.h.

References shark::IParameterizable< VectorType >::parameterVector().

Referenced by shark::ProductKernel< InputType >::addKernel(), shark::calculateKernelMatrixParameterDerivative(), shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::eval(), shark::RadiusMarginQuotient< InputType, CacheType >::eval(), shark::VariationalAutoencoderError< SearchPointType >::eval(), shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::evalDerivative(), shark::KernelTargetAlignment< InputType, LabelType >::evalDerivative(), shark::RadiusMarginQuotient< InputType, CacheType >::evalDerivative(), shark::VariationalAutoencoderError< SearchPointType >::evalDerivative(), shark::initRandomNormal(), shark::initRandomUniform(), shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >::numberOfParameters(), shark::KernelBudgetedSGDTrainer< InputType, CacheType >::numberOfParameters(), shark::KernelSGDTrainer< InputType, CacheType >::numberOfParameters(), shark::OneClassSvmTrainer< InputType, CacheType >::numberOfParameters(), shark::ClusteringModel< InputT, OutputT >::numberOfParameters(), shark::GaussianTaskKernel< InputTypeT >::numberOfParameters(), shark::NormalizedKernel< InputType >::numberOfParameters(), shark::PointSetKernel< InputType >::numberOfParameters(), shark::ScaledKernel< InputType >::numberOfParameters(), shark::CrossValidationError< ModelTypeT, LabelTypeT >::numberOfVariables(), shark::KernelTargetAlignment< InputType, LabelType >::numberOfVariables(), shark::LooError< ModelTypeT, LabelType >::numberOfVariables(), shark::LooErrorCSvm< InputType, CacheType >::numberOfVariables(), shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::numberOfVariables(), shark::NegativeLogLikelihood::numberOfVariables(), shark::RadiusMarginQuotient< InputType, CacheType >::numberOfVariables(), shark::VariationalAutoencoderError< SearchPointType >::numberOfVariables(), shark::OneClassSvmTrainer< InputType, CacheType >::parameterVector(), shark::VariationalAutoencoderError< SearchPointType >::sampleZ(), shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >::setParameterVector(), shark::KernelBudgetedSGDTrainer< InputType, CacheType >::setParameterVector(), shark::KernelSGDTrainer< InputType, CacheType >::setParameterVector(), shark::OneClassSvmTrainer< InputType, CacheType >::setParameterVector(), shark::GaussianTaskKernel< InputTypeT >::setParameterVector(), and shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::setThreshold().

◆ parameterVector()

template<class VectorType = RealVector>
virtual ParameterVectorType shark::IParameterizable< VectorType >::parameterVector ( ) const
inlinevirtual

Return the parameter vector.

Reimplemented in shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >, shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelClassifier< InputType >, AbstractWeightedTrainer< KernelClassifier< InputType > > >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int, MissingFeaturesKernelExpansion< InputType > >, shark::AbstractLinearSvmTrainer< InputType >, shark::KernelBudgetedSGDTrainer< InputType, CacheType >, shark::EpsilonSvmTrainer< InputType, CacheType >, shark::KernelSGDTrainer< InputType, CacheType >, shark::LassoRegression< InputVectorType >, shark::LDA, shark::LinearRegression, shark::LinearSAGTrainer< InputType, LabelType >, shark::LogisticRegression< InputVectorType >, shark::OneClassSvmTrainer< InputType, CacheType >, shark::RFTrainer< unsigned int >, shark::RFTrainer< RealVector >, shark::Classifier< Model >, shark::Classifier< detail::BaseNearestNeighbor< InputType, unsigned int > >, shark::Classifier< KernelExpansion< InputType > >, shark::Classifier< LinearModel< RealVector > >, shark::Centroids, shark::ClusteringModel< InputT, OutputT >, shark::ClusteringModel< InputT, RealVector >, shark::ClusteringModel< InputT, unsigned int >, shark::HierarchicalClustering< InputT >, shark::CMACMap, shark::ConcatenatedModel< VectorType >, shark::Conv2DModel< VectorType, ActivationFunction >, shark::DropoutLayer< VectorType >, shark::ARDKernelUnconstrained< InputType >, shark::DiscreteKernel, shark::GaussianRbfKernel< InputType >, shark::KernelExpansion< InputType >, shark::LinearKernel< InputType >, shark::ModelKernel< InputType >, shark::MonomialKernel< InputType >, shark::GaussianTaskKernel< InputTypeT >, shark::NormalizedKernel< InputType >, shark::PointSetKernel< InputType >, shark::PolynomialKernel< InputType >, shark::ProductKernel< InputType >, shark::ProductKernel< MultiTaskSample< InputTypeT > >, shark::ScaledKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::LinearModel< InputType, ActivationFunction >, shark::LinearModel< RealVector >, shark::NeuronLayer< NeuronType, VectorType >, shark::Normalizer< VectorType >, shark::OneVersusOneClassifier< InputType, VectorType >, shark::PoolingLayer< VectorType >, shark::RBFLayer, shark::ResizeLayer< VectorType >, shark::CARTree< LabelType >, shark::BinaryLayer, shark::BipolarLayer, shark::GaussianLayer, and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >.

Definition at line 59 of file IParameterizable.h.

Referenced by shark::IParameterizable< VectorType >::numberOfParameters(), shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >::parameterVector(), shark::KernelBudgetedSGDTrainer< InputType, CacheType >::parameterVector(), shark::KernelSGDTrainer< InputType, CacheType >::parameterVector(), shark::OneClassSvmTrainer< InputType, CacheType >::parameterVector(), shark::ClusteringModel< InputT, OutputT >::parameterVector(), shark::GaussianTaskKernel< InputTypeT >::parameterVector(), shark::NormalizedKernel< InputType >::parameterVector(), shark::PointSetKernel< InputType >::parameterVector(), shark::ScaledKernel< InputType >::parameterVector(), shark::NegativeLogLikelihood::proposeStartingPoint(), shark::VariationalAutoencoderError< SearchPointType >::proposeStartingPoint(), shark::AbstractModel< InputTypeT, OutputTypeT, ParameterVectorType >::write(), and shark::AbstractMetric< InputTypeT >::write().

◆ setParameterVector()

template<class VectorType = RealVector>
virtual void shark::IParameterizable< VectorType >::setParameterVector ( ParameterVectorType const &  newParameters)
inlinevirtual

Set the parameter vector.

Reimplemented in shark::RBM< VisibleLayerT, HiddenLayerT, randomT >, shark::LassoRegression< InputVectorType >, shark::LinearRegression, shark::ConcatenatedModel< VectorType >, shark::Conv2DModel< VectorType, ActivationFunction >, shark::DropoutLayer< VectorType >, shark::NeuronLayer< NeuronType, VectorType >, shark::PoolingLayer< VectorType >, shark::ResizeLayer< VectorType >, shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >, shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelClassifier< InputType >, AbstractWeightedTrainer< KernelClassifier< InputType > > >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int, MissingFeaturesKernelExpansion< InputType > >, shark::AbstractLinearSvmTrainer< InputType >, shark::KernelBudgetedSGDTrainer< InputType, CacheType >, shark::EpsilonSvmTrainer< InputType, CacheType >, shark::KernelSGDTrainer< InputType, CacheType >, shark::LinearSAGTrainer< InputType, LabelType >, shark::OneClassSvmTrainer< InputType, CacheType >, shark::RFTrainer< unsigned int >, shark::RFTrainer< RealVector >, shark::Centroids, shark::ClusteringModel< InputT, OutputT >, shark::ClusteringModel< InputT, RealVector >, shark::ClusteringModel< InputT, unsigned int >, shark::HierarchicalClustering< InputT >, shark::CMACMap, shark::ARDKernelUnconstrained< InputType >, shark::DiscreteKernel, shark::GaussianRbfKernel< InputType >, shark::KernelExpansion< InputType >, shark::LinearKernel< InputType >, shark::ModelKernel< InputType >, shark::MonomialKernel< InputType >, shark::GaussianTaskKernel< InputTypeT >, shark::NormalizedKernel< InputType >, shark::PointSetKernel< InputType >, shark::PolynomialKernel< InputType >, shark::ProductKernel< InputType >, shark::ProductKernel< MultiTaskSample< InputTypeT > >, shark::ScaledKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::RBFLayer, shark::BinaryLayer, shark::BipolarLayer, shark::GaussianLayer, shark::LDA, shark::LogisticRegression< InputVectorType >, shark::CARTree< LabelType >, shark::Normalizer< VectorType >, and shark::OneVersusOneClassifier< InputType, VectorType >.

Definition at line 65 of file IParameterizable.h.

References SHARK_ASSERT.

Referenced by shark::LooError< ModelTypeT, LabelType >::eval(), shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::eval(), shark::LooErrorCSvm< InputType, CacheType >::eval(), shark::KernelTargetAlignment< InputType, LabelType >::eval(), shark::NegativeLogLikelihood::eval(), shark::CrossValidationError< ModelTypeT, LabelTypeT >::eval(), shark::RadiusMarginQuotient< InputType, CacheType >::eval(), shark::SvmLogisticInterpretation< InputType >::eval(), shark::VariationalAutoencoderError< SearchPointType >::eval(), shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::evalDerivative(), shark::KernelTargetAlignment< InputType, LabelType >::evalDerivative(), shark::NegativeLogLikelihood::evalDerivative(), shark::RadiusMarginQuotient< InputType, CacheType >::evalDerivative(), shark::SvmLogisticInterpretation< InputType >::evalDerivative(), shark::VariationalAutoencoderError< SearchPointType >::evalDerivative(), shark::initRandomNormal(), shark::initRandomUniform(), shark::AbstractModel< InputTypeT, OutputTypeT, ParameterVectorType >::read(), shark::AbstractMetric< InputTypeT >::read(), shark::VariationalAutoencoderError< SearchPointType >::sampleZ(), shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >::setParameterVector(), shark::KernelBudgetedSGDTrainer< InputType, CacheType >::setParameterVector(), shark::KernelSGDTrainer< InputType, CacheType >::setParameterVector(), shark::OneClassSvmTrainer< InputType, CacheType >::setParameterVector(), shark::ClusteringModel< InputT, OutputT >::setParameterVector(), shark::GaussianTaskKernel< InputTypeT >::setParameterVector(), shark::NormalizedKernel< InputType >::setParameterVector(), shark::PointSetKernel< InputType >::setParameterVector(), and shark::ScaledKernel< InputType >::setParameterVector().


The documentation for this class was generated from the following file: