Top level interface for everything that holds parameters. More...
#include <shark/Core/IParameterizable.h>
Public Types | |
typedef VectorType | ParameterVectorType |
Public Member Functions | |
virtual | ~IParameterizable () |
virtual ParameterVectorType | parameterVector () const |
Return the parameter vector. | |
virtual void | setParameterVector (ParameterVectorType const &newParameters) |
Set the parameter vector. | |
virtual std::size_t | numberOfParameters () const |
Return the number of parameters. | |
Top level interface for everything that holds parameters.
This interface is inherited by AbstractModel for unified access to the parameters of models, but also by objective functions and algorithms with hyper-parameters.
the type of parameter vector can be chosen, e.g. to change precision or port parameters to GPU
Definition at line 53 of file IParameterizable.h.
typedef VectorType shark::IParameterizable< VectorType >::ParameterVectorType |
Definition at line 55 of file IParameterizable.h.
|
inlinevirtual |
Definition at line 56 of file IParameterizable.h.
|
inlinevirtual |
Return the number of parameters.
Reimplemented in shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >, shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelClassifier< InputType >, AbstractWeightedTrainer< KernelClassifier< InputType > > >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int, MissingFeaturesKernelExpansion< InputType > >, shark::AbstractLinearSvmTrainer< InputType >, shark::KernelBudgetedSGDTrainer< InputType, CacheType >, shark::EpsilonSvmTrainer< InputType, CacheType >, shark::KernelSGDTrainer< InputType, CacheType >, shark::LassoRegression< InputVectorType >, shark::LDA, shark::LinearRegression, shark::LinearSAGTrainer< InputType, LabelType >, shark::LogisticRegression< InputVectorType >, shark::OneClassSvmTrainer< InputType, CacheType >, shark::Classifier< Model >, shark::Classifier< detail::BaseNearestNeighbor< InputType, unsigned int > >, shark::Classifier< KernelExpansion< InputType > >, shark::Classifier< LinearModel< RealVector > >, shark::Centroids, shark::ClusteringModel< InputT, OutputT >, shark::ClusteringModel< InputT, RealVector >, shark::ClusteringModel< InputT, unsigned int >, shark::HierarchicalClustering< InputT >, shark::CMACMap, shark::ConcatenatedModel< VectorType >, shark::Conv2DModel< VectorType, ActivationFunction >, shark::DropoutLayer< VectorType >, shark::ARDKernelUnconstrained< InputType >, shark::DiscreteKernel, shark::GaussianRbfKernel< InputType >, shark::KernelExpansion< InputType >, shark::ModelKernel< InputType >, shark::MonomialKernel< InputType >, shark::GaussianTaskKernel< InputTypeT >, shark::NormalizedKernel< InputType >, shark::PointSetKernel< InputType >, shark::PolynomialKernel< InputType >, shark::ProductKernel< InputType >, shark::ProductKernel< MultiTaskSample< InputTypeT > >, shark::ScaledKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::LinearModel< InputType, ActivationFunction >, shark::LinearModel< RealVector >, shark::NeuronLayer< NeuronType, VectorType >, shark::Normalizer< VectorType >, shark::OneVersusOneClassifier< InputType, VectorType >, shark::PoolingLayer< VectorType >, shark::RBFLayer, shark::ResizeLayer< VectorType >, shark::CARTree< LabelType >, shark::BinaryLayer, shark::BipolarLayer, shark::GaussianLayer, and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >.
Definition at line 71 of file IParameterizable.h.
References shark::IParameterizable< VectorType >::parameterVector().
Referenced by shark::ProductKernel< InputType >::addKernel(), shark::calculateKernelMatrixParameterDerivative(), shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::eval(), shark::RadiusMarginQuotient< InputType, CacheType >::eval(), shark::VariationalAutoencoderError< SearchPointType >::eval(), shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::evalDerivative(), shark::KernelTargetAlignment< InputType, LabelType >::evalDerivative(), shark::RadiusMarginQuotient< InputType, CacheType >::evalDerivative(), shark::VariationalAutoencoderError< SearchPointType >::evalDerivative(), shark::initRandomNormal(), shark::initRandomUniform(), shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >::numberOfParameters(), shark::KernelBudgetedSGDTrainer< InputType, CacheType >::numberOfParameters(), shark::KernelSGDTrainer< InputType, CacheType >::numberOfParameters(), shark::OneClassSvmTrainer< InputType, CacheType >::numberOfParameters(), shark::ClusteringModel< InputT, OutputT >::numberOfParameters(), shark::GaussianTaskKernel< InputTypeT >::numberOfParameters(), shark::NormalizedKernel< InputType >::numberOfParameters(), shark::PointSetKernel< InputType >::numberOfParameters(), shark::ScaledKernel< InputType >::numberOfParameters(), shark::CrossValidationError< ModelTypeT, LabelTypeT >::numberOfVariables(), shark::KernelTargetAlignment< InputType, LabelType >::numberOfVariables(), shark::LooError< ModelTypeT, LabelType >::numberOfVariables(), shark::LooErrorCSvm< InputType, CacheType >::numberOfVariables(), shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::numberOfVariables(), shark::NegativeLogLikelihood::numberOfVariables(), shark::RadiusMarginQuotient< InputType, CacheType >::numberOfVariables(), shark::VariationalAutoencoderError< SearchPointType >::numberOfVariables(), shark::OneClassSvmTrainer< InputType, CacheType >::parameterVector(), shark::VariationalAutoencoderError< SearchPointType >::sampleZ(), shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >::setParameterVector(), shark::KernelBudgetedSGDTrainer< InputType, CacheType >::setParameterVector(), shark::KernelSGDTrainer< InputType, CacheType >::setParameterVector(), shark::OneClassSvmTrainer< InputType, CacheType >::setParameterVector(), shark::GaussianTaskKernel< InputTypeT >::setParameterVector(), and shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::setThreshold().
|
inlinevirtual |
Return the parameter vector.
Reimplemented in shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >, shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelClassifier< InputType >, AbstractWeightedTrainer< KernelClassifier< InputType > > >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int, MissingFeaturesKernelExpansion< InputType > >, shark::AbstractLinearSvmTrainer< InputType >, shark::KernelBudgetedSGDTrainer< InputType, CacheType >, shark::EpsilonSvmTrainer< InputType, CacheType >, shark::KernelSGDTrainer< InputType, CacheType >, shark::LassoRegression< InputVectorType >, shark::LDA, shark::LinearRegression, shark::LinearSAGTrainer< InputType, LabelType >, shark::LogisticRegression< InputVectorType >, shark::OneClassSvmTrainer< InputType, CacheType >, shark::RFTrainer< unsigned int >, shark::RFTrainer< RealVector >, shark::Classifier< Model >, shark::Classifier< detail::BaseNearestNeighbor< InputType, unsigned int > >, shark::Classifier< KernelExpansion< InputType > >, shark::Classifier< LinearModel< RealVector > >, shark::Centroids, shark::ClusteringModel< InputT, OutputT >, shark::ClusteringModel< InputT, RealVector >, shark::ClusteringModel< InputT, unsigned int >, shark::HierarchicalClustering< InputT >, shark::CMACMap, shark::ConcatenatedModel< VectorType >, shark::Conv2DModel< VectorType, ActivationFunction >, shark::DropoutLayer< VectorType >, shark::ARDKernelUnconstrained< InputType >, shark::DiscreteKernel, shark::GaussianRbfKernel< InputType >, shark::KernelExpansion< InputType >, shark::LinearKernel< InputType >, shark::ModelKernel< InputType >, shark::MonomialKernel< InputType >, shark::GaussianTaskKernel< InputTypeT >, shark::NormalizedKernel< InputType >, shark::PointSetKernel< InputType >, shark::PolynomialKernel< InputType >, shark::ProductKernel< InputType >, shark::ProductKernel< MultiTaskSample< InputTypeT > >, shark::ScaledKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::LinearModel< InputType, ActivationFunction >, shark::LinearModel< RealVector >, shark::NeuronLayer< NeuronType, VectorType >, shark::Normalizer< VectorType >, shark::OneVersusOneClassifier< InputType, VectorType >, shark::PoolingLayer< VectorType >, shark::RBFLayer, shark::ResizeLayer< VectorType >, shark::CARTree< LabelType >, shark::BinaryLayer, shark::BipolarLayer, shark::GaussianLayer, and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >.
Definition at line 59 of file IParameterizable.h.
Referenced by shark::IParameterizable< VectorType >::numberOfParameters(), shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >::parameterVector(), shark::KernelBudgetedSGDTrainer< InputType, CacheType >::parameterVector(), shark::KernelSGDTrainer< InputType, CacheType >::parameterVector(), shark::OneClassSvmTrainer< InputType, CacheType >::parameterVector(), shark::ClusteringModel< InputT, OutputT >::parameterVector(), shark::GaussianTaskKernel< InputTypeT >::parameterVector(), shark::NormalizedKernel< InputType >::parameterVector(), shark::PointSetKernel< InputType >::parameterVector(), shark::ScaledKernel< InputType >::parameterVector(), shark::NegativeLogLikelihood::proposeStartingPoint(), shark::VariationalAutoencoderError< SearchPointType >::proposeStartingPoint(), shark::AbstractModel< InputTypeT, OutputTypeT, ParameterVectorType >::write(), and shark::AbstractMetric< InputTypeT >::write().
|
inlinevirtual |
Set the parameter vector.
Reimplemented in shark::RBM< VisibleLayerT, HiddenLayerT, randomT >, shark::LassoRegression< InputVectorType >, shark::LinearRegression, shark::ConcatenatedModel< VectorType >, shark::Conv2DModel< VectorType, ActivationFunction >, shark::DropoutLayer< VectorType >, shark::NeuronLayer< NeuronType, VectorType >, shark::PoolingLayer< VectorType >, shark::ResizeLayer< VectorType >, shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >, shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelClassifier< InputType >, AbstractWeightedTrainer< KernelClassifier< InputType > > >, shark::AbstractSvmTrainer< InputType, unsigned int, KernelExpansion< InputType > >, shark::AbstractSvmTrainer< InputType, unsigned int, MissingFeaturesKernelExpansion< InputType > >, shark::AbstractLinearSvmTrainer< InputType >, shark::KernelBudgetedSGDTrainer< InputType, CacheType >, shark::EpsilonSvmTrainer< InputType, CacheType >, shark::KernelSGDTrainer< InputType, CacheType >, shark::LinearSAGTrainer< InputType, LabelType >, shark::OneClassSvmTrainer< InputType, CacheType >, shark::RFTrainer< unsigned int >, shark::RFTrainer< RealVector >, shark::Centroids, shark::ClusteringModel< InputT, OutputT >, shark::ClusteringModel< InputT, RealVector >, shark::ClusteringModel< InputT, unsigned int >, shark::HierarchicalClustering< InputT >, shark::CMACMap, shark::ARDKernelUnconstrained< InputType >, shark::DiscreteKernel, shark::GaussianRbfKernel< InputType >, shark::KernelExpansion< InputType >, shark::LinearKernel< InputType >, shark::ModelKernel< InputType >, shark::MonomialKernel< InputType >, shark::GaussianTaskKernel< InputTypeT >, shark::NormalizedKernel< InputType >, shark::PointSetKernel< InputType >, shark::PolynomialKernel< InputType >, shark::ProductKernel< InputType >, shark::ProductKernel< MultiTaskSample< InputTypeT > >, shark::ScaledKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::WeightedSumKernel< InputType >, shark::RBFLayer, shark::BinaryLayer, shark::BipolarLayer, shark::GaussianLayer, shark::LDA, shark::LogisticRegression< InputVectorType >, shark::CARTree< LabelType >, shark::Normalizer< VectorType >, and shark::OneVersusOneClassifier< InputType, VectorType >.
Definition at line 65 of file IParameterizable.h.
References SHARK_ASSERT.
Referenced by shark::LooError< ModelTypeT, LabelType >::eval(), shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::eval(), shark::LooErrorCSvm< InputType, CacheType >::eval(), shark::KernelTargetAlignment< InputType, LabelType >::eval(), shark::NegativeLogLikelihood::eval(), shark::CrossValidationError< ModelTypeT, LabelTypeT >::eval(), shark::RadiusMarginQuotient< InputType, CacheType >::eval(), shark::SvmLogisticInterpretation< InputType >::eval(), shark::VariationalAutoencoderError< SearchPointType >::eval(), shark::NegativeGaussianProcessEvidence< InputType, OutputType, LabelType >::evalDerivative(), shark::KernelTargetAlignment< InputType, LabelType >::evalDerivative(), shark::NegativeLogLikelihood::evalDerivative(), shark::RadiusMarginQuotient< InputType, CacheType >::evalDerivative(), shark::SvmLogisticInterpretation< InputType >::evalDerivative(), shark::VariationalAutoencoderError< SearchPointType >::evalDerivative(), shark::initRandomNormal(), shark::initRandomUniform(), shark::AbstractModel< InputTypeT, OutputTypeT, ParameterVectorType >::read(), shark::AbstractMetric< InputTypeT >::read(), shark::VariationalAutoencoderError< SearchPointType >::sampleZ(), shark::AbstractSvmTrainer< InputType, LabelType, Model, Trainer >::setParameterVector(), shark::KernelBudgetedSGDTrainer< InputType, CacheType >::setParameterVector(), shark::KernelSGDTrainer< InputType, CacheType >::setParameterVector(), shark::OneClassSvmTrainer< InputType, CacheType >::setParameterVector(), shark::ClusteringModel< InputT, OutputT >::setParameterVector(), shark::GaussianTaskKernel< InputTypeT >::setParameterVector(), shark::NormalizedKernel< InputType >::setParameterVector(), shark::PointSetKernel< InputType >::setParameterVector(), and shark::ScaledKernel< InputType >::setParameterVector().