shark::VariationalAutoencoderError< SearchPointType > Class Template Reference

Computes the variational autoencoder error function. More...

#include <shark/ObjectiveFunctions/VariationalAutoencoderError.h>

+ Inheritance diagram for shark::VariationalAutoencoderError< SearchPointType >:

Public Types

typedef UnlabeledData< SearchPointTypeDatasetType
 
typedef AbstractModel< SearchPointType, SearchPointType, SearchPointTypeModelType
 
- Public Types inherited from shark::AbstractObjectiveFunction< SearchPointType, double >
enum  Feature
 List of features that are supported by an implementation. More...
 
typedef SearchPointType SearchPointType
 
typedef double ResultType
 
typedef boost::mpl::if_< std::is_arithmetic< double >, SearchPointType, RealMatrix >::type FirstOrderDerivative
 
typedef TypedFlags< FeatureFeatures
 This statement declares the member m_features. See Core/Flags.h for details.
 
typedef TypedFeatureNotAvailableException< FeatureFeatureNotAvailableException
 

Public Member Functions

 VariationalAutoencoderError (DatasetType const &data, ModelType *encoder, ModelType *decoder, AbstractLoss< SearchPointType, SearchPointType > *visible_loss, double lambda=1.0)
 
std::string name () const
 From INameable: return the class name.
 
SearchPointType proposeStartingPoint () const
 Proposes a starting point in the feasible search space of the function.
 
std::size_t numberOfVariables () const
 Accesses the number of variables.
 
MatrixType sampleZ (SearchPointType const &parameters, MatrixType const &batch) const
 
double eval (SearchPointType const &parameters) const
 Evaluates the objective function for the supplied argument.
 
double evalDerivative (SearchPointType const &parameters, SearchPointType &derivative) const
 
- Public Member Functions inherited from shark::AbstractObjectiveFunction< SearchPointType, double >
const Featuresfeatures () const
 
virtual void updateFeatures ()
 
bool hasValue () const
 returns whether this function can calculate it's function value
 
bool hasFirstDerivative () const
 returns whether this function can calculate the first derivative
 
bool hasSecondDerivative () const
 returns whether this function can calculate the second derivative
 
bool canProposeStartingPoint () const
 returns whether this function can propose a starting point.
 
bool isConstrained () const
 returns whether this function can return
 
bool hasConstraintHandler () const
 returns whether this function can return
 
bool canProvideClosestFeasible () const
 Returns whether this function can calculate thee closest feasible to an infeasible point.
 
bool isThreadSafe () const
 Returns true, when the function can be usd in parallel threads.
 
bool isNoisy () const
 Returns true, when the function can be usd in parallel threads.
 
 AbstractObjectiveFunction ()
 Default ctor.
 
virtual ~AbstractObjectiveFunction ()
 Virtual destructor.
 
virtual void init ()
 
void setRng (random::rng_type *rng)
 Sets the Rng used by the objective function.
 
virtual bool hasScalableDimensionality () const
 
virtual void setNumberOfVariables (std::size_t numberOfVariables)
 Adjusts the number of variables if the function is scalable.
 
virtual std::size_t numberOfObjectives () const
 
virtual bool hasScalableObjectives () const
 
virtual void setNumberOfObjectives (std::size_t numberOfObjectives)
 Adjusts the number of objectives if the function is scalable.
 
std::size_t evaluationCounter () const
 Accesses the evaluation counter of the function.
 
AbstractConstraintHandler< SearchPointType > const & getConstraintHandler () const
 Returns the constraint handler of the function if it has one.
 
virtual bool isFeasible (const SearchPointType &input) const
 Tests whether a point in SearchSpace is feasible, e.g., whether the constraints are fulfilled.
 
virtual void closestFeasible (SearchPointType &input) const
 If supported, the supplied point is repaired such that it satisfies all of the function's constraints.
 
ResultType operator() (SearchPointType const &input) const
 Evaluates the function. Useful together with STL-Algorithms like std::transform.
 
virtual ResultType evalDerivative (SearchPointType const &input, FirstOrderDerivative &derivative) const
 Evaluates the objective function and calculates its gradient.
 
virtual ResultType evalDerivative (SearchPointType const &input, SecondOrderDerivative &derivative) const
 Evaluates the objective function and calculates its gradient.
 
- Public Member Functions inherited from shark::INameable
virtual ~INameable ()
 

Additional Inherited Members

- Protected Member Functions inherited from shark::AbstractObjectiveFunction< SearchPointType, double >
void announceConstraintHandler (AbstractConstraintHandler< SearchPointType > const *handler)
 helper function which is called to announce the presence of an constraint handler.
 
- Protected Attributes inherited from shark::AbstractObjectiveFunction< SearchPointType, double >
Features m_features
 
std::size_t m_evaluationCounter
 Evaluation counter, default value: 0.
 
AbstractConstraintHandler< SearchPointType > const * m_constraintHandler
 
random::rng_type * mep_rng
 

Detailed Description

template<class SearchPointType>
class shark::VariationalAutoencoderError< SearchPointType >

Computes the variational autoencoder error function.

We want to optimize a model \( p(x) = \int p(x|z) p(z) dz \) where we choose p(z) as a multivariate normal distribution and p(x|z) is an arbitrary model, e.g. a deep neural entwork. The naive solution is sampling from p(z) and then compute the sample average. This will fail when p(z|x) is a very localized distribution and we might need many samples from p(z) to find a sample which is likely under p(z|x). p(z|x) is assumed to be intractable to compute, so we introduce a second model q(z|x), modeling p(z|x) and we want to train it such that it learns the unknown p(z|x). For this a variational lower bound on the likelihood is used and we maximize

\[ log p(x) \leq E_{q(z|x)}[\log p(x|z)] - KL[q(z|x) || p(z)] \]

The first term explains the meaning of variational autoencoder: we first sample z given x using the encoder model q and then decode z to obtain an estimate for x. The only difference to normal autoencoders is that we now have a probabilistic z. The second term ensures that q is learning p(z|x), assuming that we have enough modeling capacity to actually learn it. See https://arxiv.org/abs/1606.05908 for more background.

Implementation notice: we assume q(z|x) to be a set of independent gaussian distributions parameterized as \( q(z| mu(x), \log \sigma^2(x)) \). The provided encoder model q must therefore have twice as many outputs as the decvoder has inputs as the second half of outputs is interpreted as the log of the variance. So if z should be a 100 dimensional variable, q must have 200 outputs. The outputs and loss function used for the encoder p is arbitrary, but a SquaredLoss will work well, however also other losses like pixel probabilities can be used.

Definition at line 63 of file VariationalAutoencoderError.h.

Member Typedef Documentation

◆ DatasetType

◆ ModelType

Constructor & Destructor Documentation

◆ VariationalAutoencoderError()

Member Function Documentation

◆ eval()

template<class SearchPointType >
double shark::VariationalAutoencoderError< SearchPointType >::eval ( SearchPointType const &  input) const
inlinevirtual

Evaluates the objective function for the supplied argument.

Parameters
[in]inputThe argument for which the function shall be evaluated.
Returns
The result of evaluating the function for the supplied argument.
Exceptions
FeatureNotAvailableExceptionin the default implementation and if a function does not support this feature.

Reimplemented from shark::AbstractObjectiveFunction< SearchPointType, double >.

Definition at line 110 of file VariationalAutoencoderError.h.

References shark::Data< Type >::batch(), shark::random::discrete(), shark::AbstractObjectiveFunction< SearchPointType, double >::m_evaluationCounter, shark::AbstractObjectiveFunction< SearchPointType, double >::mep_rng, shark::Data< Type >::numberOfBatches(), shark::IParameterizable< VectorType >::numberOfParameters(), shark::VariationalAutoencoderError< SearchPointType >::numberOfVariables(), shark::IParameterizable< VectorType >::setParameterVector(), SIZE_CHECK, and shark::sqr().

◆ evalDerivative()

◆ name()

template<class SearchPointType >
std::string shark::VariationalAutoencoderError< SearchPointType >::name ( ) const
inlinevirtual

From INameable: return the class name.

Reimplemented from shark::INameable.

Definition at line 87 of file VariationalAutoencoderError.h.

◆ numberOfVariables()

◆ proposeStartingPoint()

template<class SearchPointType >
SearchPointType shark::VariationalAutoencoderError< SearchPointType >::proposeStartingPoint ( ) const
inlinevirtual

Proposes a starting point in the feasible search space of the function.

Returns
The generated starting point.
Exceptions
FeatureNotAvailableExceptionin the default implementation and if a function does not support this feature.

Reimplemented from shark::AbstractObjectiveFunction< SearchPointType, double >.

Definition at line 90 of file VariationalAutoencoderError.h.

References shark::IParameterizable< VectorType >::parameterVector().

◆ sampleZ()


The documentation for this class was generated from the following file: