Automatic relevance detection kernel for unconstrained parameter optimization. More...
#include <shark/Models/Kernels/ArdKernel.h>
Public Member Functions | |
ARDKernelUnconstrained (unsigned int dim, double gamma_init=1.0) | |
std::string | name () const |
From INameable: return the class name. | |
RealVector | parameterVector () const |
Return the parameter vector. | |
void | setParameterVector (RealVector const &newParameters) |
Set the parameter vector. | |
std::size_t | numberOfParameters () const |
Return the number of parameters. | |
boost::shared_ptr< State > | createState () const |
creates the internal state of the kernel | |
RealVector | gammaVector () const |
convenience methods for setting/getting the actual gamma values | |
void | setGammaVector (RealVector const &newGammas) |
double | eval (ConstInputReference x1, ConstInputReference x2) const |
evaluates \( k(x,z)\) | |
void | eval (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix &result) const |
evaluates \( k(x,z)\) for a whole batch | |
void | eval (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix &result, State &state) const |
evaluates \( k(x,z)\) for a whole batch | |
void | weightedParameterDerivative (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const &coefficients, State const &state, RealVector &gradient) const |
evaluates \( \frac {\partial k(x,z)}{\partial \sqrt{\gamma_i}}\) weighted over a whole batch | |
void | weightedInputDerivative (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const &coefficientsX2, State const &state, BatchInputType &gradient) const |
evaluates \( \frac {\partial k(x,z)}{\partial x}\) | |
void | read (InArchive &ar) |
From ISerializable, reads a metric from an archive. | |
void | write (OutArchive &ar) const |
From ISerializable, writes a metric to an archive. | |
Public Member Functions inherited from shark::AbstractKernelFunction< InputTypeT > | |
AbstractKernelFunction () | |
const Features & | features () const |
virtual void | updateFeatures () |
bool | hasFirstParameterDerivative () const |
bool | hasFirstInputDerivative () const |
bool | isNormalized () const |
bool | supportsVariableInputSize () const |
virtual double | eval (ConstInputReference x1, ConstInputReference x2) const |
Evaluates the kernel function. | |
double | operator() (ConstInputReference x1, ConstInputReference x2) const |
Convenience operator which evaluates the kernel function. | |
virtual void | eval (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix &result, State &state) const =0 |
Evaluates the subset of the KernelGram matrix which is defined by X1(rows) and X2 (columns). | |
virtual void | eval (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix &result) const |
Evaluates the subset of the KernelGram matrix which is defined by X1(rows) and X2 (columns). | |
RealMatrix | operator() (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2) const |
Evaluates the subset of the KernelGram matrix which is defined by X1(rows) and X2 (columns). | |
virtual void | weightedParameterDerivative (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const &coefficients, State const &state, RealVector &gradient) const |
Computes the gradient of the parameters as a weighted sum over the gradient of all elements of the batch. | |
virtual void | weightedInputDerivative (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const &coefficientsX2, State const &state, BatchInputType &gradient) const |
Calculates the derivative of the inputs X1 (only x1!). | |
virtual double | featureDistanceSqr (ConstInputReference x1, ConstInputReference x2) const |
Computes the squared distance in the kernel induced feature space. | |
virtual RealMatrix | featureDistanceSqr (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2) const |
Computes the squared distance in the kernel induced feature space. | |
Public Member Functions inherited from shark::AbstractMetric< InputTypeT > | |
AbstractMetric () | |
virtual | ~AbstractMetric () |
double | featureDistance (ConstInputReference x1, ConstInputReference x2) const |
Computes the distance in the kernel induced feature space. | |
Public Member Functions inherited from shark::INameable | |
virtual | ~INameable () |
Public Member Functions inherited from shark::IParameterizable< VectorType > | |
virtual | ~IParameterizable () |
Public Member Functions inherited from shark::ISerializable | |
virtual | ~ISerializable () |
Virtual d'tor. | |
void | load (InArchive &archive, unsigned int version) |
Versioned loading of components, calls read(...). | |
void | save (OutArchive &archive, unsigned int version) const |
Versioned storing of components, calls write(...). | |
BOOST_SERIALIZATION_SPLIT_MEMBER () | |
Protected Attributes | |
RealVector | m_gammas |
kernel bandwidth parameters, one for each input dimension. | |
std::size_t | m_inputDimensions |
how many input dimensions = how many bandwidth parameters | |
Protected Attributes inherited from shark::AbstractKernelFunction< InputTypeT > | |
Features | m_features |
Automatic relevance detection kernel for unconstrained parameter optimization.
The automatic relevance detection (ARD) kernel is a general Gaussian kernel with diagonal covariance matrix: \( k(x, z) = \exp(-\sum_i \gamma_i (x_i - z_i)^2) \). The ARD kernel holds one real-valued parameter \( \gamma_i \) per input dimension. The parameters \( p_i \) are encoded as \( p_i = log(\gamma_i) \), allowing for unconstrained optimization. Here, the exposed/visible parameters are transformed by an exp before being used in the actual computations.
Note that, like all or most models/kernels designed for unconstrained optimization, the argument to the constructor corresponds to the value of the true weights, while the set and get methods for the parameter vector set the parameterized values and not the true weights.
Definition at line 59 of file ArdKernel.h.
typedef base_type::BatchInputType shark::ARDKernelUnconstrained< InputType >::BatchInputType |
Definition at line 72 of file ArdKernel.h.
typedef base_type::ConstBatchInputReference shark::ARDKernelUnconstrained< InputType >::ConstBatchInputReference |
Definition at line 74 of file ArdKernel.h.
typedef base_type::ConstInputReference shark::ARDKernelUnconstrained< InputType >::ConstInputReference |
Definition at line 73 of file ArdKernel.h.
|
inline |
Constructor
dim | input dimension |
gamma_init | initial gamma value for all dimensions (true value, used as passed into ctor) |
Definition at line 79 of file ArdKernel.h.
References shark::AbstractKernelFunction< InputType >::HAS_FIRST_INPUT_DERIVATIVE, shark::AbstractKernelFunction< InputType >::HAS_FIRST_PARAMETER_DERIVATIVE, shark::AbstractKernelFunction< InputType >::IS_NORMALIZED, shark::AbstractKernelFunction< InputTypeT >::m_features, shark::ARDKernelUnconstrained< InputType >::m_gammas, shark::ARDKernelUnconstrained< InputType >::m_inputDimensions, and SHARK_RUNTIME_CHECK.
|
inlinevirtual |
creates the internal state of the kernel
Reimplemented from shark::AbstractKernelFunction< InputTypeT >.
Definition at line 111 of file ArdKernel.h.
|
inline |
evaluates \( k(x,z)\) for a whole batch
ARD kernel evaluation
\[ k(x, z) = \exp(-\sum_i \gamma_i (x_i - z_i)^2) \]
Definition at line 144 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas, shark::ARDKernelUnconstrained< InputType >::m_inputDimensions, and SIZE_CHECK.
|
inline |
evaluates \( k(x,z)\) for a whole batch
ARD kernel evaluation
\[ k(x, z) = \exp(-\sum_i \gamma_i (x_i - z_i)^2) \]
Definition at line 165 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas, shark::ARDKernelUnconstrained< InputType >::m_inputDimensions, SIZE_CHECK, and shark::State::toState().
|
inline |
evaluates \( k(x,z)\)
ARD kernel evaluation
\[ k(x, z) = \exp(-\sum_i \gamma_i (x_i - z_i)^2) \]
Definition at line 133 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas, shark::ARDKernelUnconstrained< InputType >::m_inputDimensions, and SIZE_CHECK.
|
inline |
convenience methods for setting/getting the actual gamma values
Definition at line 116 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas.
Referenced by run_one_trial().
|
inlinevirtual |
From INameable: return the class name.
Reimplemented from shark::INameable.
Definition at line 96 of file ArdKernel.h.
|
inlinevirtual |
Return the number of parameters.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 106 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_inputDimensions.
|
inlinevirtual |
Return the parameter vector.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 99 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas.
Referenced by run_one_trial().
|
inlinevirtual |
From ISerializable, reads a metric from an archive.
Reimplemented from shark::AbstractMetric< InputTypeT >.
Definition at line 247 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas, and shark::ARDKernelUnconstrained< InputType >::m_inputDimensions.
|
inline |
Definition at line 119 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas, shark::ARDKernelUnconstrained< InputType >::m_inputDimensions, RANGE_CHECK, and SIZE_CHECK.
|
inlinevirtual |
Set the parameter vector.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 102 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas, shark::ARDKernelUnconstrained< InputType >::m_inputDimensions, and SIZE_CHECK.
|
inline |
evaluates \( \frac {\partial k(x,z)}{\partial x}\)
first derivative of ARD kernel wrt the first input pattern
\[ \frac {\partial k(x,z)}{\partial x} = -2 \gamma_i \left( x_i - z_i \right)\cdot k(x,z) \]
Definition at line 221 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas, shark::ARDKernelUnconstrained< InputType >::m_inputDimensions, SIZE_CHECK, and shark::State::toState().
|
inline |
evaluates \( \frac {\partial k(x,z)}{\partial \sqrt{\gamma_i}}\) weighted over a whole batch
Since the ARD kernel is parametrized for unconstrained optimization, we return the derivative w.r.t. the parameters \( p_i \), where \( p_i^2 = \gamma_i \).
\[ \frac {\partial k(x,z)}{\partial p_i} = -2 p_i (x_i - z_i)^2 \cdot k(x,z) \]
Definition at line 192 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas, shark::ARDKernelUnconstrained< InputType >::m_inputDimensions, SIZE_CHECK, shark::sqr(), and shark::State::toState().
|
inlinevirtual |
From ISerializable, writes a metric to an archive.
The default implementation just saves the parameters.
Reimplemented from shark::AbstractMetric< InputTypeT >.
Definition at line 252 of file ArdKernel.h.
References shark::ARDKernelUnconstrained< InputType >::m_gammas, and shark::ARDKernelUnconstrained< InputType >::m_inputDimensions.
|
protected |
kernel bandwidth parameters, one for each input dimension.
Definition at line 258 of file ArdKernel.h.
Referenced by shark::ARDKernelUnconstrained< InputType >::ARDKernelUnconstrained(), shark::ARDKernelUnconstrained< InputType >::eval(), shark::ARDKernelUnconstrained< InputType >::eval(), shark::ARDKernelUnconstrained< InputType >::eval(), shark::ARDKernelUnconstrained< InputType >::gammaVector(), shark::ARDKernelUnconstrained< InputType >::parameterVector(), shark::ARDKernelUnconstrained< InputType >::read(), shark::ARDKernelUnconstrained< InputType >::setGammaVector(), shark::ARDKernelUnconstrained< InputType >::setParameterVector(), shark::ARDKernelUnconstrained< InputType >::weightedInputDerivative(), shark::ARDKernelUnconstrained< InputType >::weightedParameterDerivative(), and shark::ARDKernelUnconstrained< InputType >::write().
|
protected |
how many input dimensions = how many bandwidth parameters
Definition at line 259 of file ArdKernel.h.
Referenced by shark::ARDKernelUnconstrained< InputType >::ARDKernelUnconstrained(), shark::ARDKernelUnconstrained< InputType >::eval(), shark::ARDKernelUnconstrained< InputType >::eval(), shark::ARDKernelUnconstrained< InputType >::eval(), shark::ARDKernelUnconstrained< InputType >::numberOfParameters(), shark::ARDKernelUnconstrained< InputType >::read(), shark::ARDKernelUnconstrained< InputType >::setGammaVector(), shark::ARDKernelUnconstrained< InputType >::setParameterVector(), shark::ARDKernelUnconstrained< InputType >::weightedInputDerivative(), shark::ARDKernelUnconstrained< InputType >::weightedParameterDerivative(), and shark::ARDKernelUnconstrained< InputType >::write().