Gaussian radial basis function kernel. More...
#include <shark/Models/Kernels/GaussianRbfKernel.h>
Inheritance diagram for shark::GaussianRbfKernel< InputType >:Public Member Functions | |
| GaussianRbfKernel (double gamma=1.0, bool unconstrained=false) | |
| std::string | name () const |
| From INameable: return the class name. | |
| RealVector | parameterVector () const |
| Return the parameter vector. | |
| void | setParameterVector (RealVector const &newParameters) |
| Set the parameter vector. | |
| size_t | numberOfParameters () const |
| Return the number of parameters. | |
| double | gamma () const |
| Get the bandwidth parameter value. | |
| double | sigma () const |
| Return `‘standard deviation’' of Gaussian. | |
| void | setGamma (double gamma) |
| void | setSigma (double sigma) |
| Set `‘standard deviation’' of Gaussian. | |
| void | read (InArchive &ar) |
| From ISerializable. | |
| void | write (OutArchive &ar) const |
| From ISerializable. | |
| boost::shared_ptr< State > | createState () const |
| creates the internal state of the kernel | |
| double | eval (ConstInputReference x1, ConstInputReference x2) const |
| evaluates \( k(x_1,x_2)\) | |
| void | eval (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix &result, State &state) const |
| evaluates \( k(x_1,x_2)\) and computes the intermediate value | |
| void | eval (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix &result) const |
| void | weightedParameterDerivative (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const &coefficients, State const &state, RealVector &gradient) const |
| void | weightedInputDerivative (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const &coefficientsX2, State const &state, BatchInputType &gradient) const |
Public Member Functions inherited from shark::AbstractKernelFunction< InputTypeT > | |
| AbstractKernelFunction () | |
| const Features & | features () const |
| virtual void | updateFeatures () |
| bool | hasFirstParameterDerivative () const |
| bool | hasFirstInputDerivative () const |
| bool | isNormalized () const |
| bool | supportsVariableInputSize () const |
| virtual double | eval (ConstInputReference x1, ConstInputReference x2) const |
| Evaluates the kernel function. | |
| double | operator() (ConstInputReference x1, ConstInputReference x2) const |
| Convenience operator which evaluates the kernel function. | |
| virtual void | eval (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix &result, State &state) const =0 |
| Evaluates the subset of the KernelGram matrix which is defined by X1(rows) and X2 (columns). | |
| virtual void | eval (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix &result) const |
| Evaluates the subset of the KernelGram matrix which is defined by X1(rows) and X2 (columns). | |
| RealMatrix | operator() (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2) const |
| Evaluates the subset of the KernelGram matrix which is defined by X1(rows) and X2 (columns). | |
| virtual void | weightedParameterDerivative (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const &coefficients, State const &state, RealVector &gradient) const |
| Computes the gradient of the parameters as a weighted sum over the gradient of all elements of the batch. | |
| virtual void | weightedInputDerivative (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const &coefficientsX2, State const &state, BatchInputType &gradient) const |
| Calculates the derivative of the inputs X1 (only x1!). | |
| virtual double | featureDistanceSqr (ConstInputReference x1, ConstInputReference x2) const |
| Computes the squared distance in the kernel induced feature space. | |
| virtual RealMatrix | featureDistanceSqr (ConstBatchInputReference batchX1, ConstBatchInputReference batchX2) const |
| Computes the squared distance in the kernel induced feature space. | |
Public Member Functions inherited from shark::AbstractMetric< InputTypeT > | |
| AbstractMetric () | |
| virtual | ~AbstractMetric () |
| double | featureDistance (ConstInputReference x1, ConstInputReference x2) const |
| Computes the distance in the kernel induced feature space. | |
Public Member Functions inherited from shark::INameable | |
| virtual | ~INameable () |
Public Member Functions inherited from shark::IParameterizable< VectorType > | |
| virtual | ~IParameterizable () |
Public Member Functions inherited from shark::ISerializable | |
| virtual | ~ISerializable () |
| Virtual d'tor. | |
| void | load (InArchive &archive, unsigned int version) |
| Versioned loading of components, calls read(...). | |
| void | save (OutArchive &archive, unsigned int version) const |
| Versioned storing of components, calls write(...). | |
| BOOST_SERIALIZATION_SPLIT_MEMBER () | |
Protected Attributes | |
| double | m_gamma |
| kernel bandwidth parameter | |
| bool | m_unconstrained |
| use log storage | |
Protected Attributes inherited from shark::AbstractKernelFunction< InputTypeT > | |
| Features | m_features |
Gaussian radial basis function kernel.
Gaussian radial basis function kernel \( k(x_1, x_2) = \exp(-\gamma \cdot \| x_1 - x_2 \|^2) \) with single bandwidth parameter \( \gamma \). Optionally, the parameter can be encoded as \( \exp(\eta) \), which allows for unconstrained optimization.
Definition at line 51 of file GaussianRbfKernel.h.
| typedef base_type::BatchInputType shark::GaussianRbfKernel< InputType >::BatchInputType |
Definition at line 66 of file GaussianRbfKernel.h.
| typedef base_type::ConstBatchInputReference shark::GaussianRbfKernel< InputType >::ConstBatchInputReference |
Definition at line 68 of file GaussianRbfKernel.h.
| typedef base_type::ConstInputReference shark::GaussianRbfKernel< InputType >::ConstInputReference |
Definition at line 67 of file GaussianRbfKernel.h.
|
inline |
Definition at line 70 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::gamma(), shark::AbstractKernelFunction< InputType >::HAS_FIRST_INPUT_DERIVATIVE, shark::AbstractKernelFunction< InputType >::HAS_FIRST_PARAMETER_DERIVATIVE, shark::AbstractKernelFunction< InputType >::IS_NORMALIZED, shark::AbstractKernelFunction< InputTypeT >::m_features, shark::GaussianRbfKernel< InputType >::m_gamma, and shark::GaussianRbfKernel< InputType >::m_unconstrained.
|
inlinevirtual |
creates the internal state of the kernel
Reimplemented from shark::AbstractKernelFunction< InputTypeT >.
Definition at line 142 of file GaussianRbfKernel.h.
|
inline |
Definition at line 176 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma, and SIZE_CHECK.
|
inline |
evaluates \( k(x_1,x_2)\) and computes the intermediate value
Gaussian radial basis function kernel
\[ k(x_1, x_2) = \exp(-\gamma \cdot \| x_1 - x_2 \|^2) \]
Definition at line 161 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma, SIZE_CHECK, and shark::State::toState().
|
inline |
evaluates \( k(x_1,x_2)\)
Gaussian radial basis function kernel
\[ k(x_1, x_2) = \exp(-\gamma \cdot \| x_1 - x_2 \|^2) \]
Definition at line 150 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma, and SIZE_CHECK.
|
inline |
Get the bandwidth parameter value.
Definition at line 108 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma.
Referenced by shark::GaussianRbfKernel< InputType >::GaussianRbfKernel(), main(), main(), and shark::GaussianRbfKernel< InputType >::setGamma().
|
inlinevirtual |
From INameable: return the class name.
Reimplemented from shark::INameable.
Definition at line 79 of file GaussianRbfKernel.h.
|
inlinevirtual |
Return the number of parameters.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 103 of file GaussianRbfKernel.h.
|
inlinevirtual |
Return the parameter vector.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 82 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma, and shark::GaussianRbfKernel< InputType >::m_unconstrained.
|
inlinevirtual |
From ISerializable.
Reimplemented from shark::AbstractMetric< InputTypeT >.
Definition at line 130 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma, and shark::GaussianRbfKernel< InputType >::m_unconstrained.
|
inline |
Set the bandwidth parameter value.
| shark::Exception | if gamma <= 0. |
Definition at line 119 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::gamma(), shark::GaussianRbfKernel< InputType >::m_gamma, and SHARK_RUNTIME_CHECK.
|
inlinevirtual |
Set the parameter vector.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 92 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma, shark::GaussianRbfKernel< InputType >::m_unconstrained, and SHARK_RUNTIME_CHECK.
|
inline |
Set `‘standard deviation’' of Gaussian.
Definition at line 125 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma, and shark::GaussianRbfKernel< InputType >::sigma().
|
inline |
Return `‘standard deviation’' of Gaussian.
Definition at line 113 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma.
Referenced by shark::GaussianRbfKernel< InputType >::setSigma().
|
inline |
Definition at line 206 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma, SIZE_CHECK, and shark::State::toState().
|
inline |
Definition at line 182 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma, shark::GaussianRbfKernel< InputType >::m_unconstrained, SIZE_CHECK, and shark::State::toState().
|
inlinevirtual |
From ISerializable.
Reimplemented from shark::AbstractMetric< InputTypeT >.
Definition at line 136 of file GaussianRbfKernel.h.
References shark::GaussianRbfKernel< InputType >::m_gamma, and shark::GaussianRbfKernel< InputType >::m_unconstrained.
|
protected |
kernel bandwidth parameter
Definition at line 275 of file GaussianRbfKernel.h.
Referenced by shark::GaussianRbfKernel< InputType >::eval(), shark::GaussianRbfKernel< InputType >::eval(), shark::GaussianRbfKernel< InputType >::eval(), shark::GaussianRbfKernel< InputType >::gamma(), shark::GaussianRbfKernel< InputType >::GaussianRbfKernel(), shark::GaussianRbfKernel< InputType >::parameterVector(), shark::GaussianRbfKernel< InputType >::read(), shark::GaussianRbfKernel< InputType >::setGamma(), shark::GaussianRbfKernel< InputType >::setParameterVector(), shark::GaussianRbfKernel< InputType >::setSigma(), shark::GaussianRbfKernel< InputType >::sigma(), shark::GaussianRbfKernel< InputType >::weightedInputDerivative(), shark::GaussianRbfKernel< InputType >::weightedParameterDerivative(), and shark::GaussianRbfKernel< InputType >::write().
|
protected |
use log storage
Definition at line 276 of file GaussianRbfKernel.h.
Referenced by shark::GaussianRbfKernel< InputType >::GaussianRbfKernel(), shark::GaussianRbfKernel< InputType >::parameterVector(), shark::GaussianRbfKernel< InputType >::read(), shark::GaussianRbfKernel< InputType >::setParameterVector(), shark::GaussianRbfKernel< InputType >::weightedParameterDerivative(), and shark::GaussianRbfKernel< InputType >::write().