LASSO Regression. More...
#include <shark/Algorithms/Trainers/LassoRegression.h>
Public Types | |
typedef LinearModel< InputVectorType > | ModelType |
typedef LabeledData< InputVectorType, RealVector > | DataType |
Public Types inherited from shark::AbstractTrainer< Model, LabelTypeT > | |
typedef Model | ModelType |
typedef ModelType::InputType | InputType |
typedef LabelTypeT | LabelType |
typedef LabeledData< InputType, LabelType > | DatasetType |
Public Types inherited from shark::IParameterizable< VectorType > | |
typedef VectorType | ParameterVectorType |
Public Member Functions | |
LassoRegression (double lambda, double accuracy=0.01) | |
Constructor. | |
std::string | name () const |
From INameable: return the class name. | |
double | lambda () const |
Return the current setting of the regularization parameter. | |
void | setLambda (double lambda) |
Set the regularization parameter. | |
double | accuracy () const |
Return the current setting of the accuracy (maximal gradient component of the optimization problem). | |
void | setAccuracy (double accuracy) |
Set the accuracy (maximal gradient component of the optimization problem). | |
RealVector | parameterVector () const |
Get the regularization parameter lambda through the IParameterizable interface. | |
void | setParameterVector (const RealVector ¶m) |
Set the regularization parameter lambda through the IParameterizable interface. | |
size_t | numberOfParameters () const |
Return the number of parameters (one in this case). | |
void | train (ModelType &model, DataType const &dataset) |
Train a linear model with LASSO regression. | |
Public Member Functions inherited from shark::AbstractTrainer< Model, LabelTypeT > | |
virtual void | train (ModelType &model, DatasetType const &dataset)=0 |
Core of the Trainer interface. | |
Public Member Functions inherited from shark::INameable | |
virtual | ~INameable () |
Public Member Functions inherited from shark::ISerializable | |
virtual | ~ISerializable () |
Virtual d'tor. | |
virtual void | read (InArchive &archive) |
Read the component from the supplied archive. | |
virtual void | write (OutArchive &archive) const |
Write the component to the supplied archive. | |
void | load (InArchive &archive, unsigned int version) |
Versioned loading of components, calls read(...). | |
void | save (OutArchive &archive, unsigned int version) const |
Versioned storing of components, calls write(...). | |
BOOST_SERIALIZATION_SPLIT_MEMBER () | |
Public Member Functions inherited from shark::IParameterizable< VectorType > | |
virtual | ~IParameterizable () |
Protected Attributes | |
double | m_lambda |
regularization parameter | |
double | m_accuracy |
gradient accuracy | |
LASSO Regression.
LASSO Regression extracts a sparse vector of regression coefficients. The original method amounts to L1-constrained least squares regression, while this implementation uses an L1 penalty instead of a constraint (which is equivalent).
For data vectors \( x_i \) with real-valued labels \( y_i \) the trainer solves the problem \( \min_w \quad \frac{1}{2} \sum_i (w^T x_i - y_i)^2 + \lambda \|w\|_1 \). The target accuracy of the solution is measured in terms of the smallest component of the gradient of the objective function.
The trainer has one template parameter, namely the type of the input vectors \( x_i \). These need to be vector valued, typically either RealVector of CompressedRealVector. The resulting weight vector w is represented by a LinearModel object. Currently model outputs and labels are restricted to a single dimension.
Definition at line 69 of file LassoRegression.h.
typedef LabeledData<InputVectorType, RealVector> shark::LassoRegression< InputVectorType >::DataType |
Definition at line 73 of file LassoRegression.h.
typedef LinearModel<InputVectorType> shark::LassoRegression< InputVectorType >::ModelType |
Definition at line 72 of file LassoRegression.h.
|
inline |
Constructor.
lambda | value of the regularization parameter (see class description) |
accuracy | stopping criterion for the iterative solver, maximal gradient component of the objective function (see class description) |
Definition at line 79 of file LassoRegression.h.
References shark::LassoRegression< InputVectorType >::m_accuracy, shark::LassoRegression< InputVectorType >::m_lambda, and RANGE_CHECK.
|
inline |
Return the current setting of the accuracy (maximal gradient component of the optimization problem).
Definition at line 106 of file LassoRegression.h.
References shark::LassoRegression< InputVectorType >::m_accuracy.
Referenced by shark::LassoRegression< InputVectorType >::setAccuracy().
|
inline |
Return the current setting of the regularization parameter.
Definition at line 93 of file LassoRegression.h.
References shark::LassoRegression< InputVectorType >::m_lambda.
Referenced by shark::LassoRegression< InputVectorType >::setLambda(), and shark::LassoRegression< InputVectorType >::train().
|
inlinevirtual |
From INameable: return the class name.
Reimplemented from shark::INameable.
Definition at line 88 of file LassoRegression.h.
|
inlinevirtual |
Return the number of parameters (one in this case).
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 133 of file LassoRegression.h.
|
inlinevirtual |
Get the regularization parameter lambda through the IParameterizable interface.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 119 of file LassoRegression.h.
References shark::LassoRegression< InputVectorType >::m_lambda.
|
inline |
Set the accuracy (maximal gradient component of the optimization problem).
Definition at line 112 of file LassoRegression.h.
References shark::LassoRegression< InputVectorType >::accuracy(), shark::LassoRegression< InputVectorType >::m_accuracy, and RANGE_CHECK.
|
inline |
Set the regularization parameter.
Definition at line 99 of file LassoRegression.h.
References shark::LassoRegression< InputVectorType >::lambda(), shark::LassoRegression< InputVectorType >::m_lambda, and RANGE_CHECK.
|
inlinevirtual |
Set the regularization parameter lambda through the IParameterizable interface.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 125 of file LassoRegression.h.
References shark::LassoRegression< InputVectorType >::m_lambda, RANGE_CHECK, and SIZE_CHECK.
|
inline |
Train a linear model with LASSO regression.
Definition at line 139 of file LassoRegression.h.
References shark::createBatch(), shark::Data< Type >::elements(), shark::inputDimension(), shark::LabeledData< InputT, LabelT >::inputs(), shark::LabeledData< InputT, LabelT >::labels(), shark::LassoRegression< InputVectorType >::lambda(), shark::LassoRegression< InputVectorType >::m_accuracy, shark::LassoRegression< InputVectorType >::m_lambda, and shark::LinearModel< InputType, ActivationFunction >::setStructure().
Referenced by main().
|
protected |
gradient accuracy
Definition at line 336 of file LassoRegression.h.
Referenced by shark::LassoRegression< InputVectorType >::accuracy(), shark::LassoRegression< InputVectorType >::LassoRegression(), shark::LassoRegression< InputVectorType >::setAccuracy(), and shark::LassoRegression< InputVectorType >::train().
|
protected |
regularization parameter
Definition at line 335 of file LassoRegression.h.
Referenced by shark::LassoRegression< InputVectorType >::lambda(), shark::LassoRegression< InputVectorType >::LassoRegression(), shark::LassoRegression< InputVectorType >::parameterVector(), shark::LassoRegression< InputVectorType >::setLambda(), shark::LassoRegression< InputVectorType >::setParameterVector(), and shark::LassoRegression< InputVectorType >::train().