shark::LooErrorCSvm< InputType, CacheType > Class Template Reference

Leave-one-out error, specifically optimized for C-SVMs. More...

#include <shark/ObjectiveFunctions/LooErrorCSvm.h>

+ Inheritance diagram for shark::LooErrorCSvm< InputType, CacheType >:

Public Types

typedef CacheType QpFloatType
 
typedef AbstractKernelFunction< InputTypeKernelType
 
typedef LabeledData< InputType, unsigned int > DatasetType
 
- Public Types inherited from shark::AbstractObjectiveFunction< RealVector, double >
enum  Feature
 List of features that are supported by an implementation. More...
 
typedef RealVector SearchPointType
 
typedef double ResultType
 
typedef boost::mpl::if_< std::is_arithmetic< double >, SearchPointType, RealMatrix >::type FirstOrderDerivative
 
typedef TypedFlags< FeatureFeatures
 This statement declares the member m_features. See Core/Flags.h for details.
 
typedef TypedFeatureNotAvailableException< FeatureFeatureNotAvailableException
 

Public Member Functions

 LooErrorCSvm (DatasetType const &dataset, KernelType *kernel, bool withOffset)
 Constructor.
 
std::string name () const
 From INameable: return the class name.
 
std::size_t numberOfVariables () const
 Accesses the number of variables.
 
double eval (const RealVector &params)
 
double eval (const RealVector &params, QpStoppingCondition &stop)
 
- Public Member Functions inherited from shark::AbstractObjectiveFunction< RealVector, double >
const Featuresfeatures () const
 
virtual void updateFeatures ()
 
bool hasValue () const
 returns whether this function can calculate it's function value
 
bool hasFirstDerivative () const
 returns whether this function can calculate the first derivative
 
bool hasSecondDerivative () const
 returns whether this function can calculate the second derivative
 
bool canProposeStartingPoint () const
 returns whether this function can propose a starting point.
 
bool isConstrained () const
 returns whether this function can return
 
bool hasConstraintHandler () const
 returns whether this function can return
 
bool canProvideClosestFeasible () const
 Returns whether this function can calculate thee closest feasible to an infeasible point.
 
bool isThreadSafe () const
 Returns true, when the function can be usd in parallel threads.
 
bool isNoisy () const
 Returns true, when the function can be usd in parallel threads.
 
 AbstractObjectiveFunction ()
 Default ctor.
 
virtual ~AbstractObjectiveFunction ()
 Virtual destructor.
 
virtual void init ()
 
void setRng (random::rng_type *rng)
 Sets the Rng used by the objective function.
 
virtual bool hasScalableDimensionality () const
 
virtual void setNumberOfVariables (std::size_t numberOfVariables)
 Adjusts the number of variables if the function is scalable.
 
virtual std::size_t numberOfObjectives () const
 
virtual bool hasScalableObjectives () const
 
virtual void setNumberOfObjectives (std::size_t numberOfObjectives)
 Adjusts the number of objectives if the function is scalable.
 
std::size_t evaluationCounter () const
 Accesses the evaluation counter of the function.
 
AbstractConstraintHandler< SearchPointType > const & getConstraintHandler () const
 Returns the constraint handler of the function if it has one.
 
virtual bool isFeasible (const SearchPointType &input) const
 Tests whether a point in SearchSpace is feasible, e.g., whether the constraints are fulfilled.
 
virtual void closestFeasible (SearchPointType &input) const
 If supported, the supplied point is repaired such that it satisfies all of the function's constraints.
 
virtual SearchPointType proposeStartingPoint () const
 Proposes a starting point in the feasible search space of the function.
 
virtual ResultType eval (SearchPointType const &input) const
 Evaluates the objective function for the supplied argument.
 
ResultType operator() (SearchPointType const &input) const
 Evaluates the function. Useful together with STL-Algorithms like std::transform.
 
virtual ResultType evalDerivative (SearchPointType const &input, FirstOrderDerivative &derivative) const
 Evaluates the objective function and calculates its gradient.
 
virtual ResultType evalDerivative (SearchPointType const &input, SecondOrderDerivative &derivative) const
 Evaluates the objective function and calculates its gradient.
 
- Public Member Functions inherited from shark::INameable
virtual ~INameable ()
 

Additional Inherited Members

- Protected Member Functions inherited from shark::AbstractObjectiveFunction< RealVector, double >
void announceConstraintHandler (AbstractConstraintHandler< SearchPointType > const *handler)
 helper function which is called to announce the presence of an constraint handler.
 
- Protected Attributes inherited from shark::AbstractObjectiveFunction< RealVector, double >
Features m_features
 
std::size_t m_evaluationCounter
 Evaluation counter, default value: 0.
 
AbstractConstraintHandler< SearchPointType > const * m_constraintHandler
 
random::rng_type * mep_rng
 

Detailed Description

template<class InputType, class CacheType = float>
class shark::LooErrorCSvm< InputType, CacheType >

Leave-one-out error, specifically optimized for C-SVMs.

Definition at line 50 of file LooErrorCSvm.h.

Member Typedef Documentation

◆ DatasetType

template<class InputType , class CacheType = float>
typedef LabeledData<InputType, unsigned int> shark::LooErrorCSvm< InputType, CacheType >::DatasetType

Definition at line 55 of file LooErrorCSvm.h.

◆ KernelType

template<class InputType , class CacheType = float>
typedef AbstractKernelFunction<InputType> shark::LooErrorCSvm< InputType, CacheType >::KernelType

Definition at line 54 of file LooErrorCSvm.h.

◆ QpFloatType

template<class InputType , class CacheType = float>
typedef CacheType shark::LooErrorCSvm< InputType, CacheType >::QpFloatType

Definition at line 53 of file LooErrorCSvm.h.

Constructor & Destructor Documentation

◆ LooErrorCSvm()

template<class InputType , class CacheType = float>
shark::LooErrorCSvm< InputType, CacheType >::LooErrorCSvm ( DatasetType const &  dataset,
KernelType kernel,
bool  withOffset 
)
inline

Member Function Documentation

◆ eval() [1/2]

template<class InputType , class CacheType = float>
double shark::LooErrorCSvm< InputType, CacheType >::eval ( const RealVector &  params)
inline

Evaluate the leave-one-out error for the given parameters. These parameters describe the regularization constant and the kernel parameters.

Definition at line 79 of file LooErrorCSvm.h.

References shark::LooErrorCSvm< InputType, CacheType >::eval().

Referenced by shark::LooErrorCSvm< InputType, CacheType >::eval().

◆ eval() [2/2]

template<class InputType , class CacheType = float>
double shark::LooErrorCSvm< InputType, CacheType >::eval ( const RealVector &  params,
QpStoppingCondition stop 
)
inline

◆ name()

template<class InputType , class CacheType = float>
std::string shark::LooErrorCSvm< InputType, CacheType >::name ( ) const
inlinevirtual

From INameable: return the class name.

Reimplemented from shark::INameable.

Definition at line 69 of file LooErrorCSvm.h.

◆ numberOfVariables()

template<class InputType , class CacheType = float>
std::size_t shark::LooErrorCSvm< InputType, CacheType >::numberOfVariables ( ) const
inlinevirtual

Accesses the number of variables.

Implements shark::AbstractObjectiveFunction< RealVector, double >.

Definition at line 72 of file LooErrorCSvm.h.

References shark::IParameterizable< VectorType >::numberOfParameters().


The documentation for this class was generated from the following file: