stub for the RBM class. at the moment it is just a holder of the parameter set and the Energy. More...
#include <shark/Unsupervised/RBM/RBM.h>
Public Types | |
typedef HiddenLayerT | HiddenType |
type of the hidden layer | |
typedef VisibleLayerT | VisibleType |
type of the visible layer | |
typedef randomT | randomType |
typedef Energy< RBM< VisibleType, HiddenType, randomT > > | EnergyType |
Type of the energy function. | |
typedef detail::AverageEnergyGradient< RBM > | GradientType |
Type of the gradient calculator. | |
typedef base_type::BatchInputType | BatchInputType |
typedef base_type::BatchOutputType | BatchOutputType |
Public Types inherited from shark::AbstractModel< RealVector, RealVector > | |
enum | Feature |
typedef RealVector | InputType |
Defines the input type of the model. | |
typedef RealVector | OutputType |
Defines the output type of the model. | |
typedef AbstractModel< RealVector, RealVector, RealVector > | ModelBaseType |
Defines the BaseType used by the model (this type). Useful for creating derived models. | |
typedef Batch< InputType >::type | BatchInputType |
defines the batch type of the input type. | |
typedef Batch< OutputType >::type | BatchOutputType |
defines the batch type of the output type | |
typedef TypedFlags< Feature > | Features |
typedef TypedFeatureNotAvailableException< Feature > | FeatureNotAvailableException |
Public Types inherited from shark::IParameterizable< VectorType > | |
typedef VectorType | ParameterVectorType |
Public Member Functions | |
RBM (randomType &rng) | |
std::string | name () const |
From INameable: return the class name. | |
std::size_t | numberOfParameters () const |
Returns the total number of parameters of the model. | |
RealVector | parameterVector () const |
Returns the parameters of the Model as parameter vector. | |
void | setParameterVector (const RealVector &newParameters) |
Sets the parameters of the model. | |
void | setStructure (std::size_t visibleNeurons, std::size_t hiddenNeurons) |
Creates the structure of the RBM. | |
HiddenType const & | hiddenNeurons () const |
Returns the layer of hidden neurons. | |
HiddenType & | hiddenNeurons () |
Returns the layer of hidden neurons. | |
VisibleType & | visibleNeurons () |
Returns the layer of visible neurons. | |
VisibleType const & | visibleNeurons () const |
Returns the layer of visible neurons. | |
RealMatrix & | weightMatrix () |
Returns the weight matrix connecting the layers. | |
RealMatrix const & | weightMatrix () const |
Returns the weight matrix connecting the layers. | |
EnergyType | energy () const |
Returns the energy function of the RBM. | |
randomType & | rng () |
Returns the random number generator associated with this RBM. | |
void | evaluationType (bool forward, bool evalMean) |
Sets the type of evaluation, eval will perform. | |
Shape | outputShape () const |
Returns the shape of the output. | |
Shape | inputShape () const |
Returns the expected shape of the input. | |
boost::shared_ptr< State > | createState () const |
Creates an internal state of the model. | |
void | eval (BatchInputType const &patterns, BatchOutputType &outputs) const |
Passes information through/samples from an RBM in a forward or backward way. | |
void | eval (BatchInputType const &patterns, BatchOutputType &outputs, State &state) const |
Standard interface for evaluating the response of the model to a batch of patterns. | |
void | inputHidden (RealMatrix &inputs, RealMatrix const &visibleStates) const |
Calculates the input of the hidden neurons given the state of the visible in a batch-vise fassion. | |
void | inputVisible (RealMatrix &inputs, RealMatrix const &hiddenStates) const |
Calculates the input of the visible neurons given the state of the hidden. | |
std::size_t | numberOfHN () const |
Returns the number of hidden Neurons. | |
std::size_t | numberOfVN () const |
Returns the number of visible Neurons. | |
void | read (InArchive &archive) |
Reads the network from an archive. | |
void | write (OutArchive &archive) const |
Writes the network to an archive. | |
Public Member Functions inherited from shark::AbstractModel< RealVector, RealVector > | |
AbstractModel () | |
virtual | ~AbstractModel () |
const Features & | features () const |
virtual void | updateFeatures () |
bool | hasFirstParameterDerivative () const |
Returns true when the first parameter derivative is implemented. | |
bool | hasFirstInputDerivative () const |
Returns true when the first input derivative is implemented. | |
virtual void | eval (InputType const &pattern, OutputType &output) const |
Standard interface for evaluating the response of the model to a single pattern. | |
Data< OutputType > | operator() (Data< InputType > const &patterns) const |
Model evaluation as an operator for a whole dataset. This is a convenience function. | |
OutputType | operator() (InputType const &pattern) const |
Model evaluation as an operator for a single pattern. This is a convenience function. | |
BatchOutputType | operator() (BatchInputType const &patterns) const |
Model evaluation as an operator for a single pattern. This is a convenience function. | |
virtual void | weightedParameterDerivative (BatchInputType const &pattern, BatchOutputType const &outputs, BatchOutputType const &coefficients, State const &state, RealVector &derivative) const |
calculates the weighted sum of derivatives w.r.t the parameters. | |
virtual void | weightedInputDerivative (BatchInputType const &pattern, BatchOutputType const &outputs, BatchOutputType const &coefficients, State const &state, BatchInputType &derivative) const |
calculates the weighted sum of derivatives w.r.t the inputs | |
virtual void | weightedDerivatives (BatchInputType const &patterns, BatchOutputType const &outputs, BatchOutputType const &coefficients, State const &state, RealVector ¶meterDerivative, BatchInputType &inputDerivative) const |
calculates weighted input and parameter derivative at the same time | |
Public Member Functions inherited from shark::IParameterizable< VectorType > | |
virtual | ~IParameterizable () |
Public Member Functions inherited from shark::INameable | |
virtual | ~INameable () |
Public Member Functions inherited from shark::ISerializable | |
virtual | ~ISerializable () |
Virtual d'tor. | |
void | load (InArchive &archive, unsigned int version) |
Versioned loading of components, calls read(...). | |
void | save (OutArchive &archive, unsigned int version) const |
Versioned storing of components, calls write(...). | |
BOOST_SERIALIZATION_SPLIT_MEMBER () | |
Additional Inherited Members | |
Protected Attributes inherited from shark::AbstractModel< RealVector, RealVector > | |
Features | m_features |
stub for the RBM class. at the moment it is just a holder of the parameter set and the Energy.
typedef base_type::BatchInputType shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::BatchInputType |
typedef base_type::BatchOutputType shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::BatchOutputType |
typedef Energy<RBM<VisibleType,HiddenType,randomT> > shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::EnergyType |
typedef detail::AverageEnergyGradient<RBM> shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::GradientType |
typedef HiddenLayerT shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::HiddenType |
typedef randomT shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::randomType |
typedef VisibleLayerT shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::VisibleType |
|
inline |
|
inlinevirtual |
Creates an internal state of the model.
The state is needed when the derivatives are to be calculated. Eval can store a state which is then reused to speed up the calculations of the derivatives. This also allows eval to be evaluated in parallel!
Reimplemented from shark::AbstractModel< RealVector, RealVector >.
|
inline |
|
inlinevirtual |
Passes information through/samples from an RBM in a forward or backward way.
Eval performs its operation based on the given evaluation type. There are two ways to pass data through an RBM: either forward, setting the states of the visible neurons and sample the hidden states or backwards, where the state of the hidden is fixed and the visible are sampled. Instead of the state of the hidden/visible, one often wants the mean of the state \( E_{p(h|v)}\left(h\right)\). By default, the RBM uses the forward evaluation and returns the mean of the state, but other evaluation modes can be set by evaluationType().
patterns | the batch of (visible or hidden) inputs |
outputs | the batch of (visible or hidden) outputs |
Reimplemented from shark::AbstractModel< RealVector, RealVector >.
Definition at line 242 of file RBM.h.
Referenced by shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::eval().
|
inlinevirtual |
Standard interface for evaluating the response of the model to a batch of patterns.
patterns | the inputs of the model |
outputs | the predictions or response of the model to every pattern |
state | intermediate results stored by eval which can be reused for derivative computation. |
Implements shark::AbstractModel< RealVector, RealVector >.
Definition at line 252 of file RBM.h.
References shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::eval().
|
inline |
Sets the type of evaluation, eval will perform.
Eval performs its operation based on the state of this function. There are two ways to pass data through an rbm: either forward, setting the states of the visible neurons and sample the hidden states or backwards, where the state of the hidden is fixed and the visible are sampled. Instead of the state of the hidden/visible, one often wants the mean of the state \( E_{p(h|v)}\left(h\right)\). By default, the RBM uses the forward evaluation and returns the mean of the state
forward | whether the forward view should be used false=backwards |
evalMean | whether the mean state should be returned. false=a sample is returned |
Definition at line 205 of file RBM.h.
Referenced by main().
|
inline |
|
inline |
Returns the layer of hidden neurons.
Definition at line 159 of file RBM.h.
Referenced by main(), and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::setStructure().
|
inline |
Calculates the input of the hidden neurons given the state of the visible in a batch-vise fassion.
inputs | the batch of vectors the input of the hidden neurons is stored in |
visibleStates | the batch of states of the visible neurons |
Definition at line 260 of file RBM.h.
References SIZE_CHECK.
Referenced by shark::Energy< RBM >::inputHidden().
|
inlinevirtual |
Returns the expected shape of the input.
Implements shark::AbstractModel< RealVector, RealVector >.
Definition at line 218 of file RBM.h.
References shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::numberOfHN(), and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::numberOfVN().
|
inline |
Calculates the input of the visible neurons given the state of the hidden.
inputs | the vector the input of the visible neurons is stored in |
hiddenStates | the state of the hidden neurons |
Definition at line 273 of file RBM.h.
References SIZE_CHECK.
Referenced by shark::Energy< RBM >::inputVisible().
|
inlinevirtual |
From INameable: return the class name.
Reimplemented from shark::INameable.
|
inline |
Returns the number of hidden Neurons.
Definition at line 284 of file RBM.h.
Referenced by shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::inputShape(), shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::numberOfParameters(), shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::outputShape(), and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::setParameterVector().
|
inlinevirtual |
Returns the total number of parameters of the model.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 120 of file RBM.h.
References shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::numberOfHN(), and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::numberOfVN().
|
inline |
Returns the number of visible Neurons.
Definition at line 288 of file RBM.h.
Referenced by shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::inputShape(), shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::numberOfParameters(), shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::outputShape(), and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::setParameterVector().
|
inlinevirtual |
Returns the shape of the output.
Implements shark::AbstractModel< RealVector, RealVector >.
Definition at line 210 of file RBM.h.
References shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::numberOfHN(), and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::numberOfVN().
|
inlinevirtual |
Returns the parameters of the Model as parameter vector.
Reimplemented from shark::IParameterizable< VectorType >.
|
inlinevirtual |
Reads the network from an archive.
Reimplemented from shark::AbstractModel< RealVector, RealVector >.
|
inline |
|
inlinevirtual |
Sets the parameters of the model.
newParameters | vector of parameters |
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 137 of file RBM.h.
References shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::numberOfHN(), and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::numberOfVN().
Referenced by trainRBM().
|
inline |
Creates the structure of the RBM.
hiddenNeurons | number of hidden neurons. |
visibleNeurons | number of visible neurons. |
Definition at line 150 of file RBM.h.
References shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::hiddenNeurons(), and shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::visibleNeurons().
Referenced by main(), and trainRBM().
|
inline |
Returns the layer of visible neurons.
Definition at line 167 of file RBM.h.
Referenced by shark::RBM< VisibleLayerT, HiddenLayerT, randomT >::setStructure().
|
inline |
|
inline |
|
inline |
|
inlinevirtual |
Writes the network to an archive.
Reimplemented from shark::AbstractModel< RealVector, RealVector >.