Conversion of real-valued or vector valued outputs to class labels. More...
#include <shark/Models/Classifier.h>
Public Types | |
typedef Model | DecisionFunctionType |
typedef Model::InputType | InputType |
typedef unsigned int | OutputType |
typedef Batch< InputType >::type | BatchInputType |
typedef Batch< unsignedint >::type | BatchOutputType |
typedef Model::ParameterVectorType | ParameterVectorType |
Public Types inherited from shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType > | |
enum | Feature |
typedef Model::InputType | InputType |
Defines the input type of the model. | |
typedef unsigned int | OutputType |
Defines the output type of the model. | |
typedef AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType > | ModelBaseType |
Defines the BaseType used by the model (this type). Useful for creating derived models. | |
typedef Batch< InputType >::type | BatchInputType |
defines the batch type of the input type. | |
typedef Batch< OutputType >::type | BatchOutputType |
defines the batch type of the output type | |
typedef TypedFlags< Feature > | Features |
typedef TypedFeatureNotAvailableException< Feature > | FeatureNotAvailableException |
Public Types inherited from shark::IParameterizable< VectorType > | |
typedef VectorType | ParameterVectorType |
Public Member Functions | |
Classifier () | |
Classifier (Model const &decisionFunction) | |
std::string | name () const |
returns the name of the object | |
ParameterVectorType | parameterVector () const |
Return the parameter vector. | |
void | setParameterVector (ParameterVectorType const &newParameters) |
std::size_t | numberOfParameters () const |
Return the number of parameters. | |
Shape | inputShape () const |
Returns the expected shape of the input. | |
Shape | outputShape () const |
Returns the shape of the output. | |
RealVector const & | bias () const |
RealVector & | bias () |
Model const & | decisionFunction () const |
Return the decision function. | |
Model & | decisionFunction () |
Return the decision function. | |
void | eval (BatchInputType const &input, BatchOutputType &output) const |
void | eval (BatchInputType const &input, BatchOutputType &output, State &state) const |
void | eval (InputType const &pattern, OutputType &output) const |
Standard interface for evaluating the response of the model to a single pattern. | |
void | read (InArchive &archive) |
From ISerializable. | |
void | write (OutArchive &archive) const |
From ISerializable. | |
Public Member Functions inherited from shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType > | |
AbstractModel () | |
virtual | ~AbstractModel () |
const Features & | features () const |
virtual void | updateFeatures () |
bool | hasFirstParameterDerivative () const |
Returns true when the first parameter derivative is implemented. | |
bool | hasFirstInputDerivative () const |
Returns true when the first input derivative is implemented. | |
virtual boost::shared_ptr< State > | createState () const |
Creates an internal state of the model. | |
virtual void | eval (BatchInputType const &patterns, BatchOutputType &outputs) const |
Standard interface for evaluating the response of the model to a batch of patterns. | |
virtual void | eval (BatchInputType const &patterns, BatchOutputType &outputs, State &state) const=0 |
Standard interface for evaluating the response of the model to a batch of patterns. | |
Data< OutputType > | operator() (Data< InputType > const &patterns) const |
Model evaluation as an operator for a whole dataset. This is a convenience function. | |
OutputType | operator() (InputType const &pattern) const |
Model evaluation as an operator for a single pattern. This is a convenience function. | |
BatchOutputType | operator() (BatchInputType const &patterns) const |
Model evaluation as an operator for a single pattern. This is a convenience function. | |
virtual void | weightedParameterDerivative (BatchInputType const &pattern, BatchOutputType const &outputs, BatchOutputType const &coefficients, State const &state, Model::ParameterVectorType &derivative) const |
calculates the weighted sum of derivatives w.r.t the parameters. | |
virtual void | weightedInputDerivative (BatchInputType const &pattern, BatchOutputType const &outputs, BatchOutputType const &coefficients, State const &state, BatchInputType &derivative) const |
calculates the weighted sum of derivatives w.r.t the inputs | |
virtual void | weightedDerivatives (BatchInputType const &patterns, BatchOutputType const &outputs, BatchOutputType const &coefficients, State const &state, Model::ParameterVectorType ¶meterDerivative, BatchInputType &inputDerivative) const |
calculates weighted input and parameter derivative at the same time | |
Public Member Functions inherited from shark::IParameterizable< VectorType > | |
virtual | ~IParameterizable () |
virtual void | setParameterVector (ParameterVectorType const &newParameters) |
Set the parameter vector. | |
Public Member Functions inherited from shark::INameable | |
virtual | ~INameable () |
Public Member Functions inherited from shark::ISerializable | |
virtual | ~ISerializable () |
Virtual d'tor. | |
void | load (InArchive &archive, unsigned int version) |
Versioned loading of components, calls read(...). | |
void | save (OutArchive &archive, unsigned int version) const |
Versioned storing of components, calls write(...). | |
BOOST_SERIALIZATION_SPLIT_MEMBER () | |
Additional Inherited Members | |
Protected Attributes inherited from shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType > | |
Features | m_features |
Conversion of real-valued or vector valued outputs to class labels.
In the special case that d is 1, it is assumed that the model can be represented as a 2 d vector with both components having the same value but opposite sign. In consequence, a positive output of the model is interpreted as class 1, a negative as class 0.
The underlying decision function is an arbitrary model. It should be default constructable and it can be accessed using decisionFunction(). The parameters of the Classifier are the ones of the decision function.
Optionally the model allows to set bias values which are added on the predicted values of the decision function. Thus adding positive weights on a class makes it more likely to be predicted. In the binary case with a single output, a positive weight makes class one more likely and a negative weight class 0.
Definition at line 66 of file Classifier.h.
typedef Batch<InputType>::type shark::Classifier< Model >::BatchInputType |
Definition at line 77 of file Classifier.h.
typedef Batch<unsignedint>::type shark::Classifier< Model >::BatchOutputType |
Definition at line 78 of file Classifier.h.
typedef Model shark::Classifier< Model >::DecisionFunctionType |
Definition at line 74 of file Classifier.h.
typedef Model::InputType shark::Classifier< Model >::InputType |
Definition at line 75 of file Classifier.h.
typedef unsigned int shark::Classifier< Model >::OutputType |
Definition at line 76 of file Classifier.h.
typedef Model::ParameterVectorType shark::Classifier< Model >::ParameterVectorType |
Definition at line 79 of file Classifier.h.
|
inline |
Definition at line 81 of file Classifier.h.
|
inline |
Definition at line 82 of file Classifier.h.
|
inline |
Definition at line 114 of file Classifier.h.
|
inline |
Definition at line 111 of file Classifier.h.
Referenced by shark::Classifier< Model >::eval(), and shark::Classifier< Model >::eval().
|
inline |
Return the decision function.
Definition at line 124 of file Classifier.h.
|
inline |
Return the decision function.
Definition at line 119 of file Classifier.h.
Referenced by shark::SvmLogisticInterpretation< InputType >::eval(), shark::SvmLogisticInterpretation< InputType >::evalDerivative(), main(), run(), shark::LinearClassifier< VectorType >::setStructure(), shark::LinearClassifier< VectorType >::setStructure(), shark::KernelBudgetedSGDTrainer< InputType, CacheType >::train(), shark::KernelSGDTrainer< InputType, CacheType >::train(), shark::Perceptron< InputType >::train(), shark::KernelMeanClassifier< InputType >::train(), shark::CSvmTrainer< InputType, CacheType >::train(), shark::SquaredHingeCSvmTrainer< InputType, CacheType >::train(), shark::CSvmTrainer< InputType, CacheType >::train(), and shark::SquaredHingeLinearCSvmTrainer< InputType >::train().
|
inline |
Definition at line 128 of file Classifier.h.
References shark::batchSize(), shark::Classifier< Model >::bias(), and SIZE_CHECK.
Referenced by shark::Classifier< Model >::eval().
|
inline |
Definition at line 149 of file Classifier.h.
References shark::Classifier< Model >::eval().
|
inlinevirtual |
Standard interface for evaluating the response of the model to a single pattern.
pattern | the input of the model |
output | the prediction or response of the model to the pattern |
Reimplemented from shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType >.
Definition at line 153 of file Classifier.h.
References shark::Classifier< Model >::bias(), and SIZE_CHECK.
|
inlinevirtual |
Returns the expected shape of the input.
Implements shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType >.
Definition at line 101 of file Classifier.h.
|
inlinevirtual |
returns the name of the object
Reimplemented from shark::INameable.
Reimplemented in shark::KernelClassifier< InputType >, shark::LinearClassifier< VectorType >, and shark::NearestNeighborModel< InputType, unsigned int >.
Definition at line 85 of file Classifier.h.
|
inlinevirtual |
Return the number of parameters.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 96 of file Classifier.h.
|
inlinevirtual |
Returns the shape of the output.
For the classifier, Shape is a number representing the number of classes.
Implements shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType >.
Definition at line 107 of file Classifier.h.
|
inlinevirtual |
Return the parameter vector.
Reimplemented from shark::IParameterizable< VectorType >.
Definition at line 88 of file Classifier.h.
|
inlinevirtual |
From ISerializable.
Reimplemented from shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType >.
Definition at line 172 of file Classifier.h.
|
inline |
Definition at line 92 of file Classifier.h.
Referenced by main().
|
inlinevirtual |
From ISerializable.
Reimplemented from shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType >.
Definition at line 177 of file Classifier.h.