Computes the negative log likelihood of a dataset under a model. More...
#include <shark/ObjectiveFunctions/NegativeLogLikelihood.h>
 Inheritance diagram for shark::NegativeLogLikelihood:
 Inheritance diagram for shark::NegativeLogLikelihood:| Public Types | |
| typedef UnlabeledData< RealVector > | DatasetType | 
|  Public Types inherited from shark::AbstractObjectiveFunction< RealVector, double > | |
| enum | Feature | 
| List of features that are supported by an implementation.  More... | |
| typedef RealVector | SearchPointType | 
| typedef double | ResultType | 
| typedef boost::mpl::if_< std::is_arithmetic< double >, SearchPointType, RealMatrix >::type | FirstOrderDerivative | 
| typedef TypedFlags< Feature > | Features | 
| This statement declares the member m_features. See Core/Flags.h for details. | |
| typedef TypedFeatureNotAvailableException< Feature > | FeatureNotAvailableException | 
| Public Member Functions | |
| NegativeLogLikelihood (DatasetType const &data, AbstractModel< RealVector, RealVector > *model) | |
| std::string | name () const | 
| From INameable: return the class name. | |
| SearchPointType | proposeStartingPoint () const | 
| Proposes a starting point in the feasible search space of the function. | |
| std::size_t | numberOfVariables () const | 
| Accesses the number of variables. | |
| ResultType | eval (RealVector const &input) const | 
| Evaluates the objective function for the supplied argument. | |
| ResultType | evalDerivative (SearchPointType const &input, FirstOrderDerivative &derivative) const | 
| Evaluates the objective function and calculates its gradient. | |
|  Public Member Functions inherited from shark::AbstractObjectiveFunction< RealVector, double > | |
| const Features & | features () const | 
| virtual void | updateFeatures () | 
| bool | hasValue () const | 
| returns whether this function can calculate it's function value | |
| bool | hasFirstDerivative () const | 
| returns whether this function can calculate the first derivative | |
| bool | hasSecondDerivative () const | 
| returns whether this function can calculate the second derivative | |
| bool | canProposeStartingPoint () const | 
| returns whether this function can propose a starting point. | |
| bool | isConstrained () const | 
| returns whether this function can return | |
| bool | hasConstraintHandler () const | 
| returns whether this function can return | |
| bool | canProvideClosestFeasible () const | 
| Returns whether this function can calculate thee closest feasible to an infeasible point. | |
| bool | isThreadSafe () const | 
| Returns true, when the function can be usd in parallel threads. | |
| bool | isNoisy () const | 
| Returns true, when the function can be usd in parallel threads. | |
| AbstractObjectiveFunction () | |
| Default ctor. | |
| virtual | ~AbstractObjectiveFunction () | 
| Virtual destructor. | |
| virtual void | init () | 
| void | setRng (random::rng_type *rng) | 
| Sets the Rng used by the objective function. | |
| virtual bool | hasScalableDimensionality () const | 
| virtual void | setNumberOfVariables (std::size_t numberOfVariables) | 
| Adjusts the number of variables if the function is scalable. | |
| virtual std::size_t | numberOfObjectives () const | 
| virtual bool | hasScalableObjectives () const | 
| virtual void | setNumberOfObjectives (std::size_t numberOfObjectives) | 
| Adjusts the number of objectives if the function is scalable. | |
| std::size_t | evaluationCounter () const | 
| Accesses the evaluation counter of the function. | |
| AbstractConstraintHandler< SearchPointType > const & | getConstraintHandler () const | 
| Returns the constraint handler of the function if it has one. | |
| virtual bool | isFeasible (const SearchPointType &input) const | 
| Tests whether a point in SearchSpace is feasible, e.g., whether the constraints are fulfilled. | |
| virtual void | closestFeasible (SearchPointType &input) const | 
| If supported, the supplied point is repaired such that it satisfies all of the function's constraints. | |
| ResultType | operator() (SearchPointType const &input) const | 
| Evaluates the function. Useful together with STL-Algorithms like std::transform. | |
| virtual ResultType | evalDerivative (SearchPointType const &input, SecondOrderDerivative &derivative) const | 
| Evaluates the objective function and calculates its gradient. | |
|  Public Member Functions inherited from shark::INameable | |
| virtual | ~INameable () | 
| Additional Inherited Members | |
|  Protected Member Functions inherited from shark::AbstractObjectiveFunction< RealVector, double > | |
| void | announceConstraintHandler (AbstractConstraintHandler< SearchPointType > const *handler) | 
| helper function which is called to announce the presence of an constraint handler. | |
|  Protected Attributes inherited from shark::AbstractObjectiveFunction< RealVector, double > | |
| Features | m_features | 
| std::size_t | m_evaluationCounter | 
| Evaluation counter, default value: 0. | |
| AbstractConstraintHandler< SearchPointType > const * | m_constraintHandler | 
| random::rng_type * | mep_rng | 
Computes the negative log likelihood of a dataset under a model.
The negative log likelihood is defined as
\[ L(\theta) = -\frac 1 N \sum_{i=1}^N log(p_{\theta}(x_i)) \]
where \( \theta \) is the vector of parameters of the model \( p \) and \( x \) are the datapoints of the training set. Minimizing this maximizes the probability of the datast under p. This error measure is closely related to the Kulback-Leibler-Divergence.
For this error function, the model is only allowed to have a single output
Definition at line 56 of file NegativeLogLikelihood.h.
| typedef UnlabeledData<RealVector> shark::NegativeLogLikelihood::DatasetType | 
Definition at line 59 of file NegativeLogLikelihood.h.
| 
 | inline | 
Definition at line 61 of file NegativeLogLikelihood.h.
References shark::AbstractObjectiveFunction< RealVector, double >::CAN_PROPOSE_STARTING_POINT, shark::AbstractObjectiveFunction< RealVector, double >::HAS_FIRST_DERIVATIVE, shark::AbstractModel< InputTypeT, OutputTypeT, ParameterVectorType >::hasFirstParameterDerivative(), and shark::AbstractObjectiveFunction< RealVector, double >::m_features.
| 
 | inlinevirtual | 
Evaluates the objective function for the supplied argument.
| [in] | input | The argument for which the function shall be evaluated. | 
| FeatureNotAvailableException | in the default implementation and if a function does not support this feature. | 
Reimplemented from shark::AbstractObjectiveFunction< RealVector, double >.
Definition at line 82 of file NegativeLogLikelihood.h.
References shark::Data< Type >::batch(), shark::AbstractObjectiveFunction< RealVector, double >::m_evaluationCounter, shark::Data< Type >::numberOfBatches(), shark::Data< Type >::numberOfElements(), numberOfVariables(), shark::IParameterizable< VectorType >::setParameterVector(), SHARK_CRITICAL_REGION, SHARK_PARALLEL_FOR, and SIZE_CHECK.
| 
 | inlinevirtual | 
Evaluates the objective function and calculates its gradient.
| [in] | input | The argument to eval the function for. | 
| [out] | derivative | The derivate is placed here. | 
| FeatureNotAvailableException | in the default implementation and if a function does not support this feature. | 
Reimplemented from shark::AbstractObjectiveFunction< RealVector, double >.
Definition at line 100 of file NegativeLogLikelihood.h.
References shark::Data< Type >::batch(), shark::AbstractModel< InputTypeT, OutputTypeT, ParameterVectorType >::createState(), shark::AbstractModel< InputTypeT, OutputTypeT, ParameterVectorType >::eval(), shark::AbstractObjectiveFunction< RealVector, double >::m_evaluationCounter, shark::Data< Type >::numberOfBatches(), shark::Data< Type >::numberOfElements(), numberOfVariables(), shark::IParameterizable< VectorType >::setParameterVector(), SHARK_CRITICAL_REGION, SHARK_NUM_THREADS, SHARK_PARALLEL_FOR, SIZE_CHECK, and shark::AbstractModel< InputTypeT, OutputTypeT, ParameterVectorType >::weightedParameterDerivative().
| 
 | inlinevirtual | 
From INameable: return the class name.
Reimplemented from shark::INameable.
Definition at line 71 of file NegativeLogLikelihood.h.
| 
 | inlinevirtual | 
Accesses the number of variables.
Implements shark::AbstractObjectiveFunction< RealVector, double >.
Definition at line 78 of file NegativeLogLikelihood.h.
References shark::IParameterizable< VectorType >::numberOfParameters().
Referenced by eval(), and evalDerivative().
| 
 | inlinevirtual | 
Proposes a starting point in the feasible search space of the function.
| FeatureNotAvailableException | in the default implementation and if a function does not support this feature. | 
Reimplemented from shark::AbstractObjectiveFunction< RealVector, double >.
Definition at line 74 of file NegativeLogLikelihood.h.
References shark::IParameterizable< VectorType >::parameterVector().