shark::SquaredHingeLinearCSvmTrainer< InputType > Class Template Reference

#include <shark/Algorithms/Trainers/CSvmTrainer.h>

+ Inheritance diagram for shark::SquaredHingeLinearCSvmTrainer< InputType >:

Public Member Functions

 SquaredHingeLinearCSvmTrainer (double C, bool unconstrained=false)
 
std::string name () const
 From INameable: return the class name.
 
void train (LinearClassifier< InputType > &model, LabeledData< InputType, unsigned int > const &dataset)
 
- Public Member Functions inherited from shark::AbstractLinearSvmTrainer< InputType >
 AbstractLinearSvmTrainer (double C, bool offset, bool unconstrained)
 
double C () const
 Return the value of the regularization parameter C.
 
void setC (double C)
 Set the value of the regularization parameter C.
 
bool isUnconstrained () const
 Is the regularization parameter provided in logarithmic (unconstrained) form as a parameter?
 
bool trainOffset () const
 
RealVector parameterVector () const
 Get the hyper-parameter vector.
 
void setParameterVector (RealVector const &newParameters)
 Set the vector of hyper-parameters.
 
size_t numberOfParameters () const
 Return the number of hyper-parameters.
 
- Public Member Functions inherited from shark::AbstractTrainer< LinearClassifier< InputType >, unsigned int >
virtual void train (ModelType &model, DatasetType const &dataset)=0
 Core of the Trainer interface.
 
- Public Member Functions inherited from shark::INameable
virtual ~INameable ()
 
- Public Member Functions inherited from shark::ISerializable
virtual ~ISerializable ()
 Virtual d'tor.
 
virtual void read (InArchive &archive)
 Read the component from the supplied archive.
 
virtual void write (OutArchive &archive) const
 Write the component to the supplied archive.
 
void load (InArchive &archive, unsigned int version)
 Versioned loading of components, calls read(...).
 
void save (OutArchive &archive, unsigned int version) const
 Versioned storing of components, calls write(...).
 
 BOOST_SERIALIZATION_SPLIT_MEMBER ()
 
- Public Member Functions inherited from shark::QpConfig
 QpConfig (bool precomputedFlag=false, bool sparsifyFlag=true)
 Constructor.
 
QpStoppingConditionstoppingCondition ()
 Read/write access to the stopping condition.
 
QpStoppingCondition const & stoppingCondition () const
 Read access to the stopping condition.
 
QpSolutionPropertiessolutionProperties ()
 Access to the solution properties.
 
bool & precomputeKernel ()
 Flag for using a precomputed kernel matrix.
 
bool const & precomputeKernel () const
 Flag for using a precomputed kernel matrix.
 
bool & sparsify ()
 Flag for sparsifying the model after training.
 
bool const & sparsify () const
 Flag for sparsifying the model after training.
 
bool & shrinking ()
 Flag for shrinking in the decomposition solver.
 
bool const & shrinking () const
 Flag for shrinking in the decomposition solver.
 
bool & s2do ()
 Flag for S2DO (instead of SMO)
 
bool const & s2do () const
 Flag for S2DO (instead of SMO)
 
unsigned int & verbosity ()
 Verbosity level of the solver.
 
unsigned int const & verbosity () const
 Verbosity level of the solver.
 
unsigned long long const & accessCount () const
 Number of kernel accesses.
 
void setMinAccuracy (double a)
 
void setMaxIterations (unsigned long long i)
 
void setTargetValue (double v)
 
void setMaxSeconds (double s)
 
- Public Member Functions inherited from shark::IParameterizable< VectorType >
virtual ~IParameterizable ()
 

Additional Inherited Members

- Public Types inherited from shark::AbstractLinearSvmTrainer< InputType >
typedef LinearClassifier< InputTypeModelType
 
- Public Types inherited from shark::AbstractTrainer< LinearClassifier< InputType >, unsigned int >
typedef LinearClassifier< InputTypeModelType
 
typedef ModelType::InputType InputType
 
typedef unsigned int LabelType
 
typedef LabeledData< InputType, LabelTypeDatasetType
 
- Public Types inherited from shark::IParameterizable< VectorType >
typedef VectorType ParameterVectorType
 
- Public Attributes inherited from shark::AbstractLinearSvmTrainer< InputType >
QpStoppingCondition m_stoppingcondition
 conditions for when to stop the QP solver
 
QpSolutionProperties m_solutionproperties
 properties of the approximate solution found by the solver
 
unsigned int m_verbosity
 verbosity level (currently unused)
 
- Protected Attributes inherited from shark::AbstractLinearSvmTrainer< InputType >
double m_C
 Regularization parameter. The exact meaning depends on the sub-class, but the value is always positive, and higher implies a less regular solution.
 
bool m_trainOffset
 Is the SVM trained with or without bias?
 
bool m_unconstrained
 Is log(C) stored internally as a parameter instead of C? If yes, then we get rid of the constraint C > 0 on the level of the parameter interface.
 
- Protected Attributes inherited from shark::QpConfig
QpStoppingCondition m_stoppingcondition
 conditions for when to stop the QP solver
 
QpSolutionProperties m_solutionproperties
 properties of the approximate solution found by the solver
 
bool m_precomputedKernelMatrix
 should the solver use a precomputed kernel matrix?
 
bool m_sparsify
 should the trainer sparsify the model after training?
 
bool m_shrinking
 should shrinking be used?
 
bool m_s2do
 should S2DO be used instead of SMO?
 
unsigned int m_verbosity
 verbosity level (currently unused)
 
unsigned long long m_accessCount
 kernel access count
 

Detailed Description

template<class InputType>
class shark::SquaredHingeLinearCSvmTrainer< InputType >

Definition at line 1040 of file CSvmTrainer.h.

Constructor & Destructor Documentation

◆ SquaredHingeLinearCSvmTrainer()

template<class InputType >
shark::SquaredHingeLinearCSvmTrainer< InputType >::SquaredHingeLinearCSvmTrainer ( double  C,
bool  unconstrained = false 
)
inline

Definition at line 1045 of file CSvmTrainer.h.

Member Function Documentation

◆ name()

template<class InputType >
std::string shark::SquaredHingeLinearCSvmTrainer< InputType >::name ( ) const
inlinevirtual

From INameable: return the class name.

Reimplemented from shark::INameable.

Definition at line 1049 of file CSvmTrainer.h.

◆ train()


The documentation for this class was generated from the following file: