Basic linear classifier. More...
#include <shark/Models/LinearModel.h>
Public Types | |
typedef LinearModel< VectorType >::MatrixType | MatrixType |
Public Types inherited from shark::Classifier< Model > | |
typedef Model | DecisionFunctionType |
typedef Model::InputType | InputType |
typedef unsigned int | OutputType |
typedef Batch< InputType >::type | BatchInputType |
typedef Batch< unsignedint >::type | BatchOutputType |
typedef Model::ParameterVectorType | ParameterVectorType |
Public Types inherited from shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType > | |
enum | Feature |
typedef Model::InputType | InputType |
Defines the input type of the model. | |
typedef unsigned int | OutputType |
Defines the output type of the model. | |
typedef AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType > | ModelBaseType |
Defines the BaseType used by the model (this type). Useful for creating derived models. | |
typedef Batch< InputType >::type | BatchInputType |
defines the batch type of the input type. | |
typedef Batch< OutputType >::type | BatchOutputType |
defines the batch type of the output type | |
typedef TypedFlags< Feature > | Features |
typedef TypedFeatureNotAvailableException< Feature > | FeatureNotAvailableException |
Public Types inherited from shark::IParameterizable< VectorType > | |
typedef VectorType | ParameterVectorType |
Public Member Functions | |
LinearClassifier () | |
LinearClassifier (Shape const &inputs, std::size_t numClasses, bool offset=false) | |
Constructor creating a model with given dimensionalities and optional offset term. | |
LinearClassifier (MatrixType const &matrix, VectorType const &offset=VectorType()) | |
Constructor from weight matrix (and optional offset). | |
std::string | name () const |
returns the name of the object | |
void | setStructure (Shape const &inputs, std::size_t numClasses, bool offset=false) |
overwrite structure and parameters | |
void | setStructure (MatrixType const &matrix, VectorType const &offset=VectorType()) |
overwrite structure and parameters | |
Public Member Functions inherited from shark::Classifier< Model > | |
Classifier () | |
Classifier (Model const &decisionFunction) | |
ParameterVectorType | parameterVector () const |
Return the parameter vector. | |
void | setParameterVector (ParameterVectorType const &newParameters) |
std::size_t | numberOfParameters () const |
Return the number of parameters. | |
Shape | inputShape () const |
Returns the expected shape of the input. | |
Shape | outputShape () const |
Returns the shape of the output. | |
RealVector const & | bias () const |
RealVector & | bias () |
Model const & | decisionFunction () const |
Return the decision function. | |
Model & | decisionFunction () |
Return the decision function. | |
void | eval (BatchInputType const &input, BatchOutputType &output) const |
void | eval (BatchInputType const &input, BatchOutputType &output, State &state) const |
void | eval (InputType const &pattern, OutputType &output) const |
Standard interface for evaluating the response of the model to a single pattern. | |
void | read (InArchive &archive) |
From ISerializable. | |
void | write (OutArchive &archive) const |
From ISerializable. | |
Public Member Functions inherited from shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType > | |
AbstractModel () | |
virtual | ~AbstractModel () |
const Features & | features () const |
virtual void | updateFeatures () |
bool | hasFirstParameterDerivative () const |
Returns true when the first parameter derivative is implemented. | |
bool | hasFirstInputDerivative () const |
Returns true when the first input derivative is implemented. | |
virtual boost::shared_ptr< State > | createState () const |
Creates an internal state of the model. | |
virtual void | eval (BatchInputType const &patterns, BatchOutputType &outputs) const |
Standard interface for evaluating the response of the model to a batch of patterns. | |
virtual void | eval (BatchInputType const &patterns, BatchOutputType &outputs, State &state) const=0 |
Standard interface for evaluating the response of the model to a batch of patterns. | |
Data< OutputType > | operator() (Data< InputType > const &patterns) const |
Model evaluation as an operator for a whole dataset. This is a convenience function. | |
OutputType | operator() (InputType const &pattern) const |
Model evaluation as an operator for a single pattern. This is a convenience function. | |
BatchOutputType | operator() (BatchInputType const &patterns) const |
Model evaluation as an operator for a single pattern. This is a convenience function. | |
virtual void | weightedParameterDerivative (BatchInputType const &pattern, BatchOutputType const &outputs, BatchOutputType const &coefficients, State const &state, Model::ParameterVectorType &derivative) const |
calculates the weighted sum of derivatives w.r.t the parameters. | |
virtual void | weightedInputDerivative (BatchInputType const &pattern, BatchOutputType const &outputs, BatchOutputType const &coefficients, State const &state, BatchInputType &derivative) const |
calculates the weighted sum of derivatives w.r.t the inputs | |
virtual void | weightedDerivatives (BatchInputType const &patterns, BatchOutputType const &outputs, BatchOutputType const &coefficients, State const &state, Model::ParameterVectorType ¶meterDerivative, BatchInputType &inputDerivative) const |
calculates weighted input and parameter derivative at the same time | |
Public Member Functions inherited from shark::IParameterizable< VectorType > | |
virtual | ~IParameterizable () |
virtual void | setParameterVector (ParameterVectorType const &newParameters) |
Set the parameter vector. | |
Public Member Functions inherited from shark::INameable | |
virtual | ~INameable () |
Public Member Functions inherited from shark::ISerializable | |
virtual | ~ISerializable () |
Virtual d'tor. | |
void | load (InArchive &archive, unsigned int version) |
Versioned loading of components, calls read(...). | |
void | save (OutArchive &archive, unsigned int version) const |
Versioned storing of components, calls write(...). | |
BOOST_SERIALIZATION_SPLIT_MEMBER () | |
Additional Inherited Members | |
Protected Attributes inherited from shark::AbstractModel< Model::InputType, unsigned int, Model::ParameterVectorType > | |
Features | m_features |
Basic linear classifier.
The LinearClassifier class is a multi class classifier model suited for linear discriminant analysis. For c classes \( 0, \dots, c-1 \) the model computes
\( \arg \max_i w_i^T x + b_i \)
Thus is it a linear model with arg max computation. The internal linear model can be queried using decisionFunction().
Definition at line 335 of file LinearModel.h.
typedef LinearModel<VectorType>::MatrixType shark::LinearClassifier< VectorType >::MatrixType |
Definition at line 338 of file LinearModel.h.
|
inline |
Definition at line 339 of file LinearModel.h.
|
inline |
Constructor creating a model with given dimensionalities and optional offset term.
Definition at line 342 of file LinearModel.h.
References shark::LinearClassifier< VectorType >::setStructure().
|
inline |
Constructor from weight matrix (and optional offset).
Definition at line 347 of file LinearModel.h.
References shark::LinearClassifier< VectorType >::setStructure().
|
inlinevirtual |
returns the name of the object
Reimplemented from shark::Classifier< Model >.
Definition at line 351 of file LinearModel.h.
|
inline |
overwrite structure and parameters
Definition at line 360 of file LinearModel.h.
References shark::Classifier< Model >::decisionFunction().
|
inline |
overwrite structure and parameters
Definition at line 355 of file LinearModel.h.
References shark::Classifier< Model >::decisionFunction().
Referenced by shark::LinearClassifier< VectorType >::LinearClassifier(), and shark::LinearClassifier< VectorType >::LinearClassifier().