Models

Model classes for statistical prediction.

Models in shark define the classes that can perform statistical predictions on supplied input data. Models can have different types of inputs and outputs so that they can be sued for classification and regression tasks.

+ Collaboration diagram for Models:

Classes

class  shark::AbstractModel< InputTypeT, OutputTypeT, ParameterVectorType >
 Base class for all Models. More...
 
class  shark::Classifier< Model >
 Conversion of real-valued or vector valued outputs to class labels. More...
 
class  shark::CMACMap
 The CMACMap class represents a linear combination of piecewise constant functions. More...
 
class  shark::ConcatenatedModel< VectorType >
 ConcatenatedModel concatenates two models such that the output of the first model is input to the second. More...
 
class  shark::Conv2DModel< VectorType, ActivationFunction >
 Convolutional Model for 2D image data. More...
 
class  shark::DropoutLayer< VectorType >
 Implements Dropout layer semantics. More...
 
class  shark::Ensemble< ModelType, OutputType >
 Represents en weighted ensemble of models. More...
 
class  shark::KernelExpansion< InputType >
 Linear model in a kernel feature space. More...
 
struct  shark::KernelClassifier< InputType >
 Linear classifier in a kernel feature space. More...
 
class  shark::MissingFeaturesKernelExpansion< InputType >
 Kernel expansion with missing features support For a choice of kernel, see Kernels. More...
 
class  shark::LinearModel< InputType, ActivationFunction >
 Linear Prediction with optional activation function. More...
 
class  shark::LinearClassifier< VectorType >
 Basic linear classifier. More...
 
class  shark::NearestNeighborModel< InputType, LabelType >
 NearestNeighbor model for classification and regression. More...
 
class  shark::NeuronLayer< NeuronType, VectorType >
 Neuron activation layer. More...
 
class  shark::Normalizer< VectorType >
 "Diagonal" linear model for data normalization. More...
 
class  shark::OneVersusOneClassifier< InputType, VectorType >
 One-versus-one Classifier. More...
 
class  shark::PoolingLayer< VectorType >
 Performs Pooling operations for a given input image. More...
 
class  shark::RBFLayer
 Implements a layer of radial basis functions in a neural network. More...
 
class  shark::ResizeLayer< VectorType >
 Resizes an input image to a given size. More...
 
class  shark::CARTree< LabelType >
 Classification and Regression Tree. More...
 
class  shark::RFClassifier< LabelType >
 Random Forest Classifier. More...
 

Modules

 Clustering Algorithms
 
 Kernels
 
 Neuron activation functions
 
 Space Partitioning Trees