Superclass of weighted unsupervised learning algorithms. More...
#include <shark/Algorithms/Trainers/AbstractWeightedTrainer.h>
Inheritance diagram for shark::AbstractWeightedUnsupervisedTrainer< Model >:Public Types | |
| typedef base_type::ModelType | ModelType |
| typedef base_type::InputType | InputType |
| typedef base_type::DatasetType | DatasetType |
| typedef WeightedUnlabeledData< InputType > | WeightedDatasetType |
Public Types inherited from shark::AbstractUnsupervisedTrainer< Model > | |
| typedef Model | ModelType |
| typedef Model::InputType | InputType |
| typedef UnlabeledData< InputType > | DatasetType |
Public Member Functions | |
| virtual void | train (ModelType &model, WeightedDatasetType const &dataset)=0 |
| Excecutes the algorithm and trains a model on the given weighted data. | |
| virtual void | train (ModelType &model, DatasetType const &dataset) |
| Excecutes the algorithm and trains a model on the given undata. | |
Public Member Functions inherited from shark::INameable | |
| virtual | ~INameable () |
| virtual std::string | name () const |
| returns the name of the object | |
Public Member Functions inherited from shark::ISerializable | |
| virtual | ~ISerializable () |
| Virtual d'tor. | |
| virtual void | read (InArchive &archive) |
| Read the component from the supplied archive. | |
| virtual void | write (OutArchive &archive) const |
| Write the component to the supplied archive. | |
| void | load (InArchive &archive, unsigned int version) |
| Versioned loading of components, calls read(...). | |
| void | save (OutArchive &archive, unsigned int version) const |
| Versioned storing of components, calls write(...). | |
| BOOST_SERIALIZATION_SPLIT_MEMBER () | |
Superclass of weighted unsupervised learning algorithms.
Definition at line 95 of file AbstractWeightedTrainer.h.
| typedef base_type::DatasetType shark::AbstractWeightedUnsupervisedTrainer< Model >::DatasetType |
Definition at line 102 of file AbstractWeightedTrainer.h.
| typedef base_type::InputType shark::AbstractWeightedUnsupervisedTrainer< Model >::InputType |
Definition at line 101 of file AbstractWeightedTrainer.h.
| typedef base_type::ModelType shark::AbstractWeightedUnsupervisedTrainer< Model >::ModelType |
Definition at line 100 of file AbstractWeightedTrainer.h.
| typedef WeightedUnlabeledData<InputType> shark::AbstractWeightedUnsupervisedTrainer< Model >::WeightedDatasetType |
Definition at line 103 of file AbstractWeightedTrainer.h.
|
inlinevirtual |
Excecutes the algorithm and trains a model on the given undata.
This method behaves as using train with a weighted dataset where all weights are equal. The default implementation just creates such a dataset and executes the weighted version of the algorithm.
Implements shark::AbstractUnsupervisedTrainer< Model >.
Definition at line 113 of file AbstractWeightedTrainer.h.
References shark::AbstractWeightedUnsupervisedTrainer< Model >::train().
|
pure virtual |
Excecutes the algorithm and trains a model on the given weighted data.
Referenced by shark::AbstractWeightedUnsupervisedTrainer< Model >::train().