Superclass of weighted unsupervised learning algorithms. More...
#include <shark/Algorithms/Trainers/AbstractWeightedTrainer.h>
 Inheritance diagram for shark::AbstractWeightedUnsupervisedTrainer< Model >:
 Inheritance diagram for shark::AbstractWeightedUnsupervisedTrainer< Model >:| Public Types | |
| typedef base_type::ModelType | ModelType | 
| typedef base_type::InputType | InputType | 
| typedef base_type::DatasetType | DatasetType | 
| typedef WeightedUnlabeledData< InputType > | WeightedDatasetType | 
|  Public Types inherited from shark::AbstractUnsupervisedTrainer< Model > | |
| typedef Model | ModelType | 
| typedef Model::InputType | InputType | 
| typedef UnlabeledData< InputType > | DatasetType | 
| Public Member Functions | |
| virtual void | train (ModelType &model, WeightedDatasetType const &dataset)=0 | 
| Excecutes the algorithm and trains a model on the given weighted data. | |
| virtual void | train (ModelType &model, DatasetType const &dataset) | 
| Excecutes the algorithm and trains a model on the given undata. | |
|  Public Member Functions inherited from shark::INameable | |
| virtual | ~INameable () | 
| virtual std::string | name () const | 
| returns the name of the object | |
|  Public Member Functions inherited from shark::ISerializable | |
| virtual | ~ISerializable () | 
| Virtual d'tor. | |
| virtual void | read (InArchive &archive) | 
| Read the component from the supplied archive. | |
| virtual void | write (OutArchive &archive) const | 
| Write the component to the supplied archive. | |
| void | load (InArchive &archive, unsigned int version) | 
| Versioned loading of components, calls read(...). | |
| void | save (OutArchive &archive, unsigned int version) const | 
| Versioned storing of components, calls write(...). | |
| BOOST_SERIALIZATION_SPLIT_MEMBER () | |
Superclass of weighted unsupervised learning algorithms.
Definition at line 95 of file AbstractWeightedTrainer.h.
| typedef base_type::DatasetType shark::AbstractWeightedUnsupervisedTrainer< Model >::DatasetType | 
Definition at line 102 of file AbstractWeightedTrainer.h.
| typedef base_type::InputType shark::AbstractWeightedUnsupervisedTrainer< Model >::InputType | 
Definition at line 101 of file AbstractWeightedTrainer.h.
| typedef base_type::ModelType shark::AbstractWeightedUnsupervisedTrainer< Model >::ModelType | 
Definition at line 100 of file AbstractWeightedTrainer.h.
| typedef WeightedUnlabeledData<InputType> shark::AbstractWeightedUnsupervisedTrainer< Model >::WeightedDatasetType | 
Definition at line 103 of file AbstractWeightedTrainer.h.
| 
 | inlinevirtual | 
Excecutes the algorithm and trains a model on the given undata.
This method behaves as using train with a weighted dataset where all weights are equal. The default implementation just creates such a dataset and executes the weighted version of the algorithm.
Implements shark::AbstractUnsupervisedTrainer< Model >.
Definition at line 113 of file AbstractWeightedTrainer.h.
References shark::AbstractWeightedUnsupervisedTrainer< Model >::train().
| 
 | pure virtual | 
Excecutes the algorithm and trains a model on the given weighted data.
Referenced by shark::AbstractWeightedUnsupervisedTrainer< Model >::train().