shark::AbstractUnsupervisedTrainer< Model > Class Template Referenceabstract

Superclass of unsupervised learning algorithms. More...

#include <shark/Algorithms/Trainers/AbstractTrainer.h>

+ Inheritance diagram for shark::AbstractUnsupervisedTrainer< Model >:

Public Types

typedef Model ModelType
 
typedef Model::InputType InputType
 
typedef UnlabeledData< InputTypeDatasetType
 

Public Member Functions

virtual void train (ModelType &model, DatasetType const &inputset)=0
 Core of the Trainer interface.
 
- Public Member Functions inherited from shark::INameable
virtual ~INameable ()
 
virtual std::string name () const
 returns the name of the object
 
- Public Member Functions inherited from shark::ISerializable
virtual ~ISerializable ()
 Virtual d'tor.
 
virtual void read (InArchive &archive)
 Read the component from the supplied archive.
 
virtual void write (OutArchive &archive) const
 Write the component to the supplied archive.
 
void load (InArchive &archive, unsigned int version)
 Versioned loading of components, calls read(...).
 
void save (OutArchive &archive, unsigned int version) const
 Versioned storing of components, calls write(...).
 
 BOOST_SERIALIZATION_SPLIT_MEMBER ()
 

Detailed Description

template<class Model>
class shark::AbstractUnsupervisedTrainer< Model >

Superclass of unsupervised learning algorithms.

AbstractUnsupervisedTrainer is the superclass of all unsupervised learning algorithms. It consists of a single virtual function to train the model.
Note: Most learning algorithms of this type operate on a special model type, such as a linear model, a kernel expansion, or a nearest neighbor model. Thus, these algorithms should provide a specialized train method that accepts only this model type. The virtual train method should be overriden with a method that checks the type of the model and calls the specialized train method.

Definition at line 106 of file AbstractTrainer.h.

Member Typedef Documentation

◆ DatasetType

template<class Model >
typedef UnlabeledData<InputType> shark::AbstractUnsupervisedTrainer< Model >::DatasetType

Definition at line 111 of file AbstractTrainer.h.

◆ InputType

template<class Model >
typedef Model::InputType shark::AbstractUnsupervisedTrainer< Model >::InputType

Definition at line 110 of file AbstractTrainer.h.

◆ ModelType

template<class Model >
typedef Model shark::AbstractUnsupervisedTrainer< Model >::ModelType

Definition at line 109 of file AbstractTrainer.h.

Member Function Documentation

◆ train()

template<class Model >
virtual void shark::AbstractUnsupervisedTrainer< Model >::train ( ModelType model,
DatasetType const &  inputset 
)
pure virtual

Core of the Trainer interface.

Implemented in shark::AbstractWeightedUnsupervisedTrainer< Model >.


The documentation for this class was generated from the following file: