Unsupervised Trainers

Optimized algorithms to solve specialized unsupervised optimization problems.

A supervised problem consists only of input data. Typical tasks are normalization distribution learning

Classes

class  shark::AbstractUnsupervisedTrainer< Model >
 Superclass of unsupervised learning algorithms. More...
 
class  shark::AbstractWeightedUnsupervisedTrainer< Model >
 Superclass of weighted unsupervised learning algorithms. More...
 
class  shark::NormalizeComponentsUnitInterval< DataType >
 Train a model to normalize the components of a dataset to fit into the unit inverval. More...
 
class  shark::NormalizeComponentsUnitVariance< DataType >
 Train a linear model to normalize the components of a dataset to unit variance, and optionally to zero mean. More...
 
class  shark::NormalizeComponentsWhitening
 Train a linear model to whiten the data. More...
 
class  shark::NormalizeComponentsZCA
 Train a linear model to whiten the data. More...
 
class  shark::NormalizeKernelUnitVariance< InputType >
 Determine the scaling factor of a ScaledKernel so that it has unit variance in feature space one on a given dataset. More...
 
class  shark::OneClassSvmTrainer< InputType, CacheType >
 Training of one-class SVMs. More...
 
class  shark::PCA
 Principal Component Analysis. More...