DeepNetworkTrainingRBM.cpp
Go to the documentation of this file.
1//noisy AutoencoderModel model and deep network
2#include <shark/Models/LinearModel.h>//single dense layer
3#include <shark/Models/ConcatenatedModel.h>//for stacking layers and concatenating noise model
4#include <shark/Unsupervised/RBM/BinaryRBM.h> // model for unsupervised pre-training
5
6//training the model
7#include <shark/ObjectiveFunctions/ErrorFunction.h>//the error function performing the regularisation of the hidden neurons
8#include <shark/ObjectiveFunctions/Loss/SquaredLoss.h> // squared loss used for unsupervised pre-training
9#include <shark/ObjectiveFunctions/Loss/CrossEntropy.h> // loss used for supervised training
10#include <shark/ObjectiveFunctions/Loss/ZeroOneLoss.h> // loss used for evaluation of performance
11#include <shark/ObjectiveFunctions/Regularizer.h> //L1 and L2 regularisation
12#include <shark/Algorithms/GradientDescent/SteepestDescent.h> //optimizer: simple gradient descent.
13#include <shark/Algorithms/GradientDescent/Rprop.h> //optimizer for autoencoders
14
15using namespace std;
16using namespace shark;
17
18//our artificial problem
20 std::vector<RealVector> data(320,RealVector(16));
21 std::vector<unsigned int> label(320);
22 RealVector line(4);
23 for(std::size_t k = 0; k != 10; ++k){
24 for(size_t x=0; x != 16; x++) {
25 for(size_t j=0; j != 4; j++) {
26 bool val = (x & (1<<j)) > 0;
27 line(j) = val;
29 line(j) = !val;
30 }
31
32 for(int i=0; i != 4; i++) {
33 subrange(data[x+k*16],i*4 ,i*4 + 4) = line;
34 }
35 for(int i=0; i != 4; i++) {
36 for(int l=0; l<4; l++) {
37 data[x+k*16+160](l*4 + i) = line(l);
38 }
39 }
40 label[x+k*16] = 1;
41 label[x+k*16+160] = 0;
42 }
43 }
44 return createLabeledDataFromRange(data,label);
45}
46
47//training of an RBM
49 UnlabeledData<RealVector> const& data,//the data to train with
50 std::size_t numHidden,//number of features in the AutoencoderModel
51 std::size_t iterations, //number of iterations to optimize
52 double regularisation,//strength of the regularisation
53 double learningRate // learning rate of steepest descent
54){
55 //create rbm with simple binary units using the global random number generator
56 std::size_t inputs = dataDimension(data);
58 rbm.setStructure(inputs,numHidden);
59 initRandomUniform(rbm,-0.1*std::sqrt(1.0/inputs),0.1*std::sqrt(1.0/inputs));//initialize weights uniformly
60
61 //create derivative to optimize the rbm
62 //we want a simple vanilla CD-1.
63 BinaryCD estimator(&rbm);
64 TwoNormRegularizer<> regularizer;
65 //0.0 is the regularization strength. 0.0 means no regularization. choose as >= 0.0
66 estimator.setRegularizer(regularisation,&regularizer);
67 estimator.setK(1);//number of sampling steps
68 estimator.setData(data);//the data used for optimization
69
70 //create and configure optimizer
71 SteepestDescent<> optimizer;
72 optimizer.setLearningRate(learningRate);//learning rate of the algorithm
73
74 //now we train the rbm and evaluate the mean negative log-likelihood at the end
75 unsigned int numIterations = iterations;//iterations for training
76 estimator.init();
77 optimizer.init(estimator);
78 for(unsigned int iteration = 0; iteration != numIterations; ++iteration) {
79 optimizer.step(estimator);
80 }
81 rbm.setParameterVector(optimizer.solution().point);
82 return rbm;
83}
84
85
86int main()
87{
88 //model parameters
89 std::size_t numHidden1 = 8;
90 std::size_t numHidden2 = 8;
91 //unsupervised hyper parameters
92 double unsupRegularisation = 0.001;
93 double unsupLearningRate = 0.1;
94 std::size_t unsupIterations = 10000;
95 //supervised hyper parameters
96 double regularisation = 0.0001;
97 std::size_t iterations = 200;
98
99 //load data and split into training and test
101 data.shuffle();
102 LabeledData<RealVector,unsigned int> test = splitAtElement(data,static_cast<std::size_t>(0.5*data.numberOfElements()));
103
104 //train the first hidden layer
105 std::cout<<"pre-training first layer"<<std::endl;
106 BinaryRBM rbm1 = trainRBM(
107 data.inputs(),numHidden1,
108 unsupRegularisation,unsupIterations, unsupLearningRate
109 );
110
111 //compute the mapping onto features of the first hidden layer
112 rbm1.evaluationType(true,true);//we compute the direction visible->hidden and want the features and no samples
113 UnlabeledData<RealVector> intermediateData=rbm1(data.inputs());
114
115 //train the next layer
116 std::cout<<"pre-training second layer"<<std::endl;
117 BinaryRBM rbm2 = trainRBM(
118 intermediateData,numHidden2,
119 unsupRegularisation,unsupIterations, unsupLearningRate
120 );
121
122
123 //build three layer neural network from the re-trained RBMs
127 initRandomNormal(output,0.01);
128 auto network = layer1 >> layer2 >> output;
129
130 //create the supervised problem. Cross Entropy loss with two norm regularisation
132 ErrorFunction<> error(data, &network, &loss);
133 TwoNormRegularizer<> regularizer(error.numberOfVariables());
134 error.setRegularizer(regularisation,&regularizer);
135
136 //optimize the model
137 std::cout<<"training supervised model"<<std::endl;
138 Rprop<> optimizer;
139 error.init();
140 optimizer.init(error);
141 for(std::size_t i = 0; i != iterations; ++i){
142 optimizer.step(error);
143 std::cout<<i<<" "<<optimizer.solution().value<<std::endl;
144 }
145 network.setParameterVector(optimizer.solution().point);
146
147 //evaluation
149 Data<RealVector> predictionTrain = network(data.inputs());
150 cout << "classification error,train: " << loss01.eval(data.labels(), predictionTrain) << endl;
151
152 Data<RealVector> prediction = network(test.inputs());
153 cout << "classification error,test: " << loss01.eval(test.labels(), prediction) << endl;
154
155}