shark::ContrastiveDivergence< Operator > Class Template Reference

Implements k-step Contrastive Divergence described by Hinton et al. (2006). More...

#include <shark/Unsupervised/RBM/GradientApproximations/ContrastiveDivergence.h>

+ Inheritance diagram for shark::ContrastiveDivergence< Operator >:

Public Types

typedef Operator::RBM RBM
 
- Public Types inherited from shark::AbstractObjectiveFunction< RealVector, double >
enum  Feature
 List of features that are supported by an implementation. More...
 
typedef RealVector SearchPointType
 
typedef double ResultType
 
typedef boost::mpl::if_< std::is_arithmetic< double >, SearchPointType, RealMatrix >::type FirstOrderDerivative
 
typedef TypedFlags< FeatureFeatures
 This statement declares the member m_features. See Core/Flags.h for details.
 
typedef TypedFeatureNotAvailableException< FeatureFeatureNotAvailableException
 

Public Member Functions

 ContrastiveDivergence (RBM *rbm)
 The constructor.
 
std::string name () const
 From INameable: return the class name.
 
void setData (UnlabeledData< RealVector > const &data)
 Sets the training batch.
 
void setK (unsigned int k)
 Sets the value of k- the number of steps of the Gibbs Chain.
 
SearchPointType proposeStartingPoint () const
 Proposes a starting point in the feasible search space of the function.
 
std::size_t numberOfVariables () const
 Returns the number of variables of the RBM.
 
std::size_t numBatches () const
 Returns the number of batches of the dataset that are used in every iteration.
 
std::size_t & numBatches ()
 Returns a reference to the number of batches of the dataset that are used in every iteration.
 
void setRegularizer (double factor, SingleObjectiveFunction *regularizer)
 
double evalDerivative (SearchPointType const &parameter, FirstOrderDerivative &derivative) const
 Gives the CD-k approximation of the log-likelihood gradient.
 
- Public Member Functions inherited from shark::AbstractObjectiveFunction< RealVector, double >
const Featuresfeatures () const
 
virtual void updateFeatures ()
 
bool hasValue () const
 returns whether this function can calculate it's function value
 
bool hasFirstDerivative () const
 returns whether this function can calculate the first derivative
 
bool hasSecondDerivative () const
 returns whether this function can calculate the second derivative
 
bool canProposeStartingPoint () const
 returns whether this function can propose a starting point.
 
bool isConstrained () const
 returns whether this function can return
 
bool hasConstraintHandler () const
 returns whether this function can return
 
bool canProvideClosestFeasible () const
 Returns whether this function can calculate thee closest feasible to an infeasible point.
 
bool isThreadSafe () const
 Returns true, when the function can be usd in parallel threads.
 
bool isNoisy () const
 Returns true, when the function can be usd in parallel threads.
 
 AbstractObjectiveFunction ()
 Default ctor.
 
virtual ~AbstractObjectiveFunction ()
 Virtual destructor.
 
virtual void init ()
 
void setRng (random::rng_type *rng)
 Sets the Rng used by the objective function.
 
virtual bool hasScalableDimensionality () const
 
virtual void setNumberOfVariables (std::size_t numberOfVariables)
 Adjusts the number of variables if the function is scalable.
 
virtual std::size_t numberOfObjectives () const
 
virtual bool hasScalableObjectives () const
 
virtual void setNumberOfObjectives (std::size_t numberOfObjectives)
 Adjusts the number of objectives if the function is scalable.
 
std::size_t evaluationCounter () const
 Accesses the evaluation counter of the function.
 
AbstractConstraintHandler< SearchPointType > const & getConstraintHandler () const
 Returns the constraint handler of the function if it has one.
 
virtual bool isFeasible (const SearchPointType &input) const
 Tests whether a point in SearchSpace is feasible, e.g., whether the constraints are fulfilled.
 
virtual void closestFeasible (SearchPointType &input) const
 If supported, the supplied point is repaired such that it satisfies all of the function's constraints.
 
virtual ResultType eval (SearchPointType const &input) const
 Evaluates the objective function for the supplied argument.
 
ResultType operator() (SearchPointType const &input) const
 Evaluates the function. Useful together with STL-Algorithms like std::transform.
 
virtual ResultType evalDerivative (SearchPointType const &input, SecondOrderDerivative &derivative) const
 Evaluates the objective function and calculates its gradient.
 
- Public Member Functions inherited from shark::INameable
virtual ~INameable ()
 

Additional Inherited Members

- Protected Member Functions inherited from shark::AbstractObjectiveFunction< RealVector, double >
void announceConstraintHandler (AbstractConstraintHandler< SearchPointType > const *handler)
 helper function which is called to announce the presence of an constraint handler.
 
- Protected Attributes inherited from shark::AbstractObjectiveFunction< RealVector, double >
Features m_features
 
std::size_t m_evaluationCounter
 Evaluation counter, default value: 0.
 
AbstractConstraintHandler< SearchPointType > const * m_constraintHandler
 
random::rng_type * mep_rng
 

Detailed Description

template<class Operator>
class shark::ContrastiveDivergence< Operator >

Implements k-step Contrastive Divergence described by Hinton et al. (2006).

k-step Contrastive Divergence approximates the gradient by initializing a Gibbs chain with a training example and run it for k steps. The sample gained after k steps than samples is than used to approximate the mean of the RBM distribution in the gradient.

Definition at line 44 of file ContrastiveDivergence.h.

Member Typedef Documentation

◆ RBM

template<class Operator >
typedef Operator::RBM shark::ContrastiveDivergence< Operator >::RBM

Definition at line 46 of file ContrastiveDivergence.h.

Constructor & Destructor Documentation

◆ ContrastiveDivergence()

Member Function Documentation

◆ evalDerivative()

template<class Operator >
double shark::ContrastiveDivergence< Operator >::evalDerivative ( SearchPointType const &  parameter,
FirstOrderDerivative derivative 
) const
inlinevirtual

Gives the CD-k approximation of the log-likelihood gradient.

Parameters
parameterthe actual parameters of the RBM
derivativeholds later the CD-k approximation of the log-likelihood gradient

Reimplemented from shark::AbstractObjectiveFunction< RealVector, double >.

Definition at line 113 of file ContrastiveDivergence.h.

References shark::Data< Type >::batch(), shark::batchEnd(), shark::AbstractObjectiveFunction< PointType, ResultT >::evalDerivative(), shark::ContrastiveDivergence< Operator >::numBatches(), shark::Data< Type >::numberOfBatches(), SHARK_CRITICAL_REGION, SHARK_NUM_THREADS, and SHARK_PARALLEL_FOR.

◆ name()

template<class Operator >
std::string shark::ContrastiveDivergence< Operator >::name ( ) const
inlinevirtual

From INameable: return the class name.

Reimplemented from shark::INameable.

Definition at line 62 of file ContrastiveDivergence.h.

◆ numBatches() [1/2]

template<class Operator >
std::size_t & shark::ContrastiveDivergence< Operator >::numBatches ( )
inline

Returns a reference to the number of batches of the dataset that are used in every iteration.

If it is less than all batches, the batches are chosen at random.if it is 0, all batches are used.

Definition at line 100 of file ContrastiveDivergence.h.

◆ numBatches() [2/2]

template<class Operator >
std::size_t shark::ContrastiveDivergence< Operator >::numBatches ( ) const
inline

Returns the number of batches of the dataset that are used in every iteration.

If it is less than all batches, the batches are chosen at random. if it is 0, all batches are used

Definition at line 93 of file ContrastiveDivergence.h.

Referenced by shark::ContrastiveDivergence< Operator >::evalDerivative().

◆ numberOfVariables()

template<class Operator >
std::size_t shark::ContrastiveDivergence< Operator >::numberOfVariables ( ) const
inlinevirtual

Returns the number of variables of the RBM.

Returns
the number of variables of the RBM

Implements shark::AbstractObjectiveFunction< RealVector, double >.

Definition at line 86 of file ContrastiveDivergence.h.

◆ proposeStartingPoint()

template<class Operator >
SearchPointType shark::ContrastiveDivergence< Operator >::proposeStartingPoint ( ) const
inlinevirtual

Proposes a starting point in the feasible search space of the function.

Returns
The generated starting point.
Exceptions
FeatureNotAvailableExceptionin the default implementation and if a function does not support this feature.

Reimplemented from shark::AbstractObjectiveFunction< RealVector, double >.

Definition at line 79 of file ContrastiveDivergence.h.

◆ setData()

template<class Operator >
void shark::ContrastiveDivergence< Operator >::setData ( UnlabeledData< RealVector > const &  data)
inline

Sets the training batch.

Parameters
datathe batch of training data

Definition at line 68 of file ContrastiveDivergence.h.

Referenced by main(), and trainRBM().

◆ setK()

template<class Operator >
void shark::ContrastiveDivergence< Operator >::setK ( unsigned int  k)
inline

Sets the value of k- the number of steps of the Gibbs Chain.

Parameters
kthe number of steps

Definition at line 75 of file ContrastiveDivergence.h.

Referenced by main(), and trainRBM().

◆ setRegularizer()

template<class Operator >
void shark::ContrastiveDivergence< Operator >::setRegularizer ( double  factor,
SingleObjectiveFunction regularizer 
)
inline

Definition at line 104 of file ContrastiveDivergence.h.

Referenced by trainRBM().


The documentation for this class was generated from the following file: