Objective function for supervised learning. More...
#include <shark/ObjectiveFunctions/ErrorFunction.h>
Public Types | |
typedef FunctionType::ResultType | ResultType |
typedef FunctionType::FirstOrderDerivative | FirstOrderDerivative |
Public Types inherited from shark::AbstractObjectiveFunction< PointType, ResultT > | |
enum | Feature { HAS_VALUE = 1 , HAS_FIRST_DERIVATIVE = 2 , HAS_SECOND_DERIVATIVE = 4 , CAN_PROPOSE_STARTING_POINT = 8 , IS_CONSTRAINED_FEATURE = 16 , HAS_CONSTRAINT_HANDLER = 32 , CAN_PROVIDE_CLOSEST_FEASIBLE = 64 , IS_THREAD_SAFE = 128 , IS_NOISY = 256 } |
List of features that are supported by an implementation. More... | |
typedef PointType | SearchPointType |
typedef ResultT | ResultType |
typedef boost::mpl::if_< std::is_arithmetic< ResultT >, SearchPointType, RealMatrix >::type | FirstOrderDerivative |
typedef TypedFlags< Feature > | Features |
This statement declares the member m_features. See Core/Flags.h for details. | |
typedef TypedFeatureNotAvailableException< Feature > | FeatureNotAvailableException |
Public Member Functions | |
template<class InputType , class LabelType , class OutputType > | |
ErrorFunction (LabeledData< InputType, LabelType > const &dataset, AbstractModel< InputType, OutputType, SearchPointType > *model, AbstractLoss< LabelType, OutputType > *loss, bool useMiniBatches=false) | |
template<class InputType , class LabelType , class OutputType > | |
ErrorFunction (WeightedLabeledData< InputType, LabelType > const &dataset, AbstractModel< InputType, OutputType, SearchPointType > *model, AbstractLoss< LabelType, OutputType > *loss) | |
ErrorFunction (ErrorFunction const &op) | |
ErrorFunction & | operator= (ErrorFunction const &op) |
std::string | name () const |
returns the name of the object | |
void | setRegularizer (double factor, FunctionType *regularizer) |
SearchPointType | proposeStartingPoint () const |
Proposes a starting point in the feasible search space of the function. | |
std::size_t | numberOfVariables () const |
Accesses the number of variables. | |
void | init () |
double | eval (SearchPointType const &input) const |
Evaluates the objective function for the supplied argument. | |
ResultType | evalDerivative (SearchPointType const &input, FirstOrderDerivative &derivative) const |
Public Member Functions inherited from shark::AbstractObjectiveFunction< PointType, ResultT > | |
const Features & | features () const |
virtual void | updateFeatures () |
bool | hasValue () const |
returns whether this function can calculate it's function value | |
bool | hasFirstDerivative () const |
returns whether this function can calculate the first derivative | |
bool | hasSecondDerivative () const |
returns whether this function can calculate the second derivative | |
bool | canProposeStartingPoint () const |
returns whether this function can propose a starting point. | |
bool | isConstrained () const |
returns whether this function can return | |
bool | hasConstraintHandler () const |
returns whether this function can return | |
bool | canProvideClosestFeasible () const |
Returns whether this function can calculate thee closest feasible to an infeasible point. | |
bool | isThreadSafe () const |
Returns true, when the function can be usd in parallel threads. | |
bool | isNoisy () const |
Returns true, when the function can be usd in parallel threads. | |
AbstractObjectiveFunction () | |
Default ctor. | |
virtual | ~AbstractObjectiveFunction () |
Virtual destructor. | |
void | setRng (random::rng_type *rng) |
Sets the Rng used by the objective function. | |
virtual bool | hasScalableDimensionality () const |
virtual void | setNumberOfVariables (std::size_t numberOfVariables) |
Adjusts the number of variables if the function is scalable. | |
virtual std::size_t | numberOfObjectives () const |
virtual bool | hasScalableObjectives () const |
virtual void | setNumberOfObjectives (std::size_t numberOfObjectives) |
Adjusts the number of objectives if the function is scalable. | |
std::size_t | evaluationCounter () const |
Accesses the evaluation counter of the function. | |
AbstractConstraintHandler< SearchPointType > const & | getConstraintHandler () const |
Returns the constraint handler of the function if it has one. | |
virtual bool | isFeasible (const SearchPointType &input) const |
Tests whether a point in SearchSpace is feasible, e.g., whether the constraints are fulfilled. | |
virtual void | closestFeasible (SearchPointType &input) const |
If supported, the supplied point is repaired such that it satisfies all of the function's constraints. | |
ResultType | operator() (SearchPointType const &input) const |
Evaluates the function. Useful together with STL-Algorithms like std::transform. | |
virtual ResultType | evalDerivative (SearchPointType const &input, FirstOrderDerivative &derivative) const |
Evaluates the objective function and calculates its gradient. | |
virtual ResultType | evalDerivative (SearchPointType const &input, SecondOrderDerivative &derivative) const |
Evaluates the objective function and calculates its gradient. | |
Public Member Functions inherited from shark::INameable | |
virtual | ~INameable () |
Additional Inherited Members | |
Protected Member Functions inherited from shark::AbstractObjectiveFunction< PointType, ResultT > | |
void | announceConstraintHandler (AbstractConstraintHandler< SearchPointType > const *handler) |
helper function which is called to announce the presence of an constraint handler. | |
Protected Attributes inherited from shark::AbstractObjectiveFunction< PointType, ResultT > | |
Features | m_features |
std::size_t | m_evaluationCounter |
Evaluation counter, default value: 0. | |
AbstractConstraintHandler< SearchPointType > const * | m_constraintHandler |
random::rng_type * | mep_rng |
Objective function for supervised learning.
Definition at line 69 of file ErrorFunction.h.
typedef FunctionType::FirstOrderDerivative shark::ErrorFunction< SearchPointType >::FirstOrderDerivative |
Definition at line 75 of file ErrorFunction.h.
typedef FunctionType::ResultType shark::ErrorFunction< SearchPointType >::ResultType |
Definition at line 74 of file ErrorFunction.h.
|
inline |
Definition at line 78 of file ErrorFunction.h.
References shark::AbstractObjectiveFunction< PointType, ResultT >::features(), and shark::AbstractObjectiveFunction< PointType, ResultT >::m_features.
|
inline |
Definition at line 90 of file ErrorFunction.h.
References shark::AbstractObjectiveFunction< PointType, ResultT >::features(), and shark::AbstractObjectiveFunction< PointType, ResultT >::m_features.
|
inline |
Definition at line 99 of file ErrorFunction.h.
References shark::AbstractObjectiveFunction< PointType, ResultT >::features(), and shark::AbstractObjectiveFunction< PointType, ResultT >::m_features.
|
inlinevirtual |
Evaluates the objective function for the supplied argument.
[in] | input | The argument for which the function shall be evaluated. |
FeatureNotAvailableException | in the default implementation and if a function does not support this feature. |
Reimplemented from shark::AbstractObjectiveFunction< PointType, ResultT >.
Definition at line 130 of file ErrorFunction.h.
References shark::AbstractObjectiveFunction< PointType, ResultT >::eval(), shark::ErrorFunction< SearchPointType >::eval(), and shark::AbstractObjectiveFunction< PointType, ResultT >::m_evaluationCounter.
Referenced by shark::ErrorFunction< SearchPointType >::eval().
|
inline |
Definition at line 137 of file ErrorFunction.h.
References shark::AbstractObjectiveFunction< PointType, ResultT >::evalDerivative(), shark::ErrorFunction< SearchPointType >::evalDerivative(), and shark::AbstractObjectiveFunction< PointType, ResultT >::m_evaluationCounter.
Referenced by shark::ErrorFunction< SearchPointType >::evalDerivative().
|
inlinevirtual |
Reimplemented from shark::AbstractObjectiveFunction< PointType, ResultT >.
Definition at line 125 of file ErrorFunction.h.
References shark::ErrorFunction< SearchPointType >::init(), and shark::AbstractObjectiveFunction< PointType, ResultT >::mep_rng.
Referenced by shark::ErrorFunction< SearchPointType >::init(), main(), main(), shark::OptimizationTrainer< Model, LabelTypeT >::train(), and trainProblem().
|
inlinevirtual |
returns the name of the object
Reimplemented from shark::INameable.
Definition at line 110 of file ErrorFunction.h.
|
inlinevirtual |
Accesses the number of variables.
Implements shark::AbstractObjectiveFunction< PointType, ResultT >.
Definition at line 121 of file ErrorFunction.h.
References shark::ErrorFunction< SearchPointType >::numberOfVariables().
Referenced by main(), main(), and shark::ErrorFunction< SearchPointType >::numberOfVariables().
|
inline |
Definition at line 103 of file ErrorFunction.h.
References shark::AbstractObjectiveFunction< PointType, ResultT >::m_features, and shark::swap().
|
inlinevirtual |
Proposes a starting point in the feasible search space of the function.
FeatureNotAvailableException | in the default implementation and if a function does not support this feature. |
Reimplemented from shark::AbstractObjectiveFunction< PointType, ResultT >.
Definition at line 118 of file ErrorFunction.h.
References shark::ErrorFunction< SearchPointType >::proposeStartingPoint().
Referenced by shark::ErrorFunction< SearchPointType >::proposeStartingPoint().
|
inline |
Definition at line 113 of file ErrorFunction.h.
Referenced by main(), main(), and trainProblem().