|
| | VDCMA (random::rng_type &rng=random::globalRng) |
| | Default c'tor.
|
| |
| std::string | name () const |
| | From INameable: return the class name.
|
| |
| std::size_t | suggestLambda (std::size_t dimension) |
| | Calculates lambda for the supplied dimensionality n.
|
| |
| std::size_t | suggestMu (std::size_t lambda) |
| | Calculates mu for the supplied lambda and the recombination strategy.
|
| |
| void | init (ObjectiveFunctionType const &function, SearchPointType const &p) |
| | initializes the optimizer using a predefined starting point
|
| |
| void | init (ObjectiveFunctionType const &function, SearchPointType const &initialSearchPoint, std::size_t lambda, std::size_t mu, double initialSigma) |
| | Initializes the algorithm for the supplied objective function.
|
| |
| void | step (ObjectiveFunctionType const &function) |
| | Executes one iteration of the algorithm.
|
| |
| double | sigma () const |
| | Accesses the current step size.
|
| |
| void | setSigma (double sigma) |
| | Accesses the current step size.
|
| |
| void | setInitialSigma (double initialSigma) |
| | set the initial step size of the algorithm.
|
| |
| RealVector const & | mean () const |
| | Accesses the current population mean.
|
| |
| RealVector const & | weights () const |
| | Accesses the current weighting vector.
|
| |
| RealVector const & | evolutionPath () const |
| | Accesses the evolution path for the covariance matrix update.
|
| |
| RealVector const & | evolutionPathSigma () const |
| | Accesses the evolution path for the step size update.
|
| |
| std::size_t | mu () const |
| | Returns the size of the parent population \(\mu\).
|
| |
| std::size_t & | mu () |
| | Returns a mutabl reference to the size of the parent population \(\mu\).
|
| |
| std::size_t | lambda () const |
| | Returns a immutable reference to the size of the offspring population \(\mu\).
|
| |
| std::size_t & | lambda () |
| | Returns a mutable reference to the size of the offspring population \(\mu\).
|
| |
| std::size_t | numInitPoints () const |
| | By default most single objective optimizers only require a single point.
|
| |
| virtual void | init (ObjectiveFunctionType const &function, std::vector< SearchPointType > const &initPoints) |
| | Initialize the optimizer for the supplied objective function using a set of initialisation points.
|
| |
| virtual const SolutionType & | solution () const |
| | returns the current solution of the optimizer
|
| |
| const Features & | features () const |
| |
| virtual void | updateFeatures () |
| |
| bool | requiresValue () const |
| |
| bool | requiresFirstDerivative () const |
| |
| bool | requiresSecondDerivative () const |
| |
| bool | canSolveConstrained () const |
| |
| bool | requiresClosestFeasible () const |
| |
| virtual | ~AbstractOptimizer () |
| |
| virtual void | init (ObjectiveFunctionType const &function) |
| | Initialize the optimizer for the supplied objective function.
|
| |
| virtual void | init (ObjectiveFunctionType const &function, std::vector< SearchPointType > const &initPoints)=0 |
| | Initialize the optimizer for the supplied objective function using a set of initialisation points.
|
| |
| virtual void | step (ObjectiveFunctionType const &function)=0 |
| | Carry out one step of the optimizer for the supplied objective function.
|
| |
| virtual | ~INameable () |
| |
| virtual | ~ISerializable () |
| | Virtual d'tor.
|
| |
| virtual void | read (InArchive &archive) |
| | Read the component from the supplied archive.
|
| |
| virtual void | write (OutArchive &archive) const |
| | Write the component to the supplied archive.
|
| |
| void | load (InArchive &archive, unsigned int version) |
| | Versioned loading of components, calls read(...).
|
| |
| void | save (OutArchive &archive, unsigned int version) const |
| | Versioned storing of components, calls write(...).
|
| |
| | BOOST_SERIALIZATION_SPLIT_MEMBER () |
| |
Definition at line 52 of file VDCMA.h.
| void shark::VDCMA::setInitialSigma |
( |
double |
initialSigma | ) |
|
|
inline |
set the initial step size of the algorithm.
Sets the initial sigma at init to a given value. If this is 0, which it is by default, the default initialisation will be sigma= 1/sqrt(N) where N is the number of variables to optimize.
this method is the prefered one instead of init()
Definition at line 189 of file VDCMA.h.