shark::LCTree< VectorType, CuttingAccuracy > Class Template Reference

LC-tree, a binary space-partitioning tree. More...

#include <shark/Models/Trees/LCTree.h>

+ Inheritance diagram for shark::LCTree< VectorType, CuttingAccuracy >:

Public Member Functions

 LCTree (Data< RealVector > const &dataset, TreeConstruction tc=TreeConstruction())
 
double squaredDistanceLowerBound (VectorType const &reference) const
 
- Public Member Functions inherited from shark::BinaryTree< InputT >
 BinaryTree (std::size_t size)
 Root node constructor: build the tree from data.
 
virtual ~BinaryTree ()
 Destroy the tree and its internal data structures.
 
BinaryTreeparent ()
 parent node
 
const BinaryTreeparent () const
 parent node
 
bool hasChildren () const
 
bool isLeaf () const
 
BinaryTreeleft ()
 "left" sub-node of the binary tree
 
const BinaryTreeleft () const
 "left" sub-node of the binary tree
 
BinaryTreeright ()
 "right" sub-node of the binary tree
 
const BinaryTreeright () const
 "right" sub-node of the binary tree
 
std::size_t size () const
 number of points inside the space represented by this node
 
std::size_t nodes () const
 number of sub-nodes in this tree (including the node itself)
 
std::size_t index (std::size_t point) const
 
double distanceFromPlane (value_type const &point) const
 Function describing the separation of space.
 
double threshold () const
 Separation threshold.
 
bool isLeft (value_type const &point) const
 
bool isRight (value_type const &point) const
 
virtual AbstractKernelFunction< value_type > const * kernel () const
 If the tree uses a kernel metric, returns a pointer to the kernel object, else NULL.
 
virtual double squaredDistanceLowerBound (value_type const &point) const =0
 Compute lower bound on the squared distance to the space cell.
 

Protected Member Functions

 LCTree (LCTree *parent, std::size_t *list, std::size_t size)
 (internal) construction of a non-root node
 
template<class Range >
void buildTree (TreeConstruction tc, Range &points)
 
double funct (VectorType const &reference) const
 function describing the separating hyperplane
 
template<class Range >
void calculateNormal (Range const &samples)
 
- Protected Member Functions inherited from shark::BinaryTree< InputT >
 BinaryTree (BinaryTree *parent, std::size_t *list, std::size_t size)
 Sub-node constructor.
 
virtual double funct (value_type const &point) const =0
 Function describing the separation of space.
 
template<class Range1 , class Range2 >
Range2::iterator splitList (Range1 &values, Range2 &points)
 Split the data in the point list and calculate the treshold accordingly.
 

Protected Attributes

VectorType m_normal
 split/cut normal vector of this node
 
BinaryTreemep_parent
 parent node
 
BinaryTreemp_left
 "left" child node
 
BinaryTreemp_right
 "right" child node
 
std::size_t * mp_indexList
 list of indices to points in the dataset
 
std::size_t m_size
 number of points in this node
 
std::size_t m_nodes
 number of nodes in the sub-tree represented by this node
 
- Protected Attributes inherited from shark::BinaryTree< InputT >
BinaryTreemep_parent
 parent node
 
BinaryTreemp_left
 "left" child node
 
BinaryTreemp_right
 "right" child node
 
std::size_t * mp_indexList
 list of indices to points in the dataset
 
std::size_t m_size
 number of points in this node
 
std::size_t m_nodes
 number of nodes in the sub-tree represented by this node
 
double m_threshold
 threshold for the separating function
 

Detailed Description

template<class VectorType = RealVector, int CuttingAccuracy = 25>
class shark::LCTree< VectorType, CuttingAccuracy >

LC-tree, a binary space-partitioning tree.

LC-tree data structure for efficient nearest neighbor searches in possibly high-dimensional spaces, but with low-dimensional effective data dimension (means << 10 dimensions). "LC" stands for Linear Cut.

This tree requires the existence of a function inner_prod computing the standard inner product of two objects of type VectorType, and a function distanceSqr computing the squared Euclidean distance between two vectors.

The tree is constructed from data by splitting the direction with largest extent (in the data covered, not space represented by the cell), recursively. Approximate direction and median are used to determine the cutting hyperplane, where the maximal number of points used to estimate the median can be controlled with the template parameter CuttingAccuracy.
The bucket size for the tree is always one, such that there is a unique point in each leaf cell.

Definition at line 80 of file LCTree.h.

Constructor & Destructor Documentation

◆ LCTree() [1/2]

template<class VectorType = RealVector, int CuttingAccuracy = 25>
shark::LCTree< VectorType, CuttingAccuracy >::LCTree ( Data< RealVector > const &  dataset,
TreeConstruction  tc = TreeConstruction() 
)
inline

Construct the tree from data. It is assumed that the container exceeds the lifetime of the LCTree (which holds only references to the points), and that the memory locations of the points remain unchanged.

Definition at line 90 of file LCTree.h.

References shark::LCTree< VectorType, CuttingAccuracy >::buildTree(), shark::LCTree< VectorType, CuttingAccuracy >::m_size, and shark::LCTree< VectorType, CuttingAccuracy >::mp_indexList.

◆ LCTree() [2/2]

template<class VectorType = RealVector, int CuttingAccuracy = 25>
shark::LCTree< VectorType, CuttingAccuracy >::LCTree ( LCTree< VectorType, CuttingAccuracy > *  parent,
std::size_t *  list,
std::size_t  size 
)
inlineprotected

(internal) construction of a non-root node

Definition at line 140 of file LCTree.h.

Member Function Documentation

◆ buildTree()

◆ calculateNormal()

template<class VectorType = RealVector, int CuttingAccuracy = 25>
template<class Range >
void shark::LCTree< VectorType, CuttingAccuracy >::calculateNormal ( Range const &  samples)
inlineprotected

◆ funct()

template<class VectorType = RealVector, int CuttingAccuracy = 25>
double shark::LCTree< VectorType, CuttingAccuracy >::funct ( VectorType const &  reference) const
inlineprotected

function describing the separating hyperplane

Definition at line 200 of file LCTree.h.

References shark::LCTree< VectorType, CuttingAccuracy >::m_normal.

◆ squaredDistanceLowerBound()

template<class VectorType = RealVector, int CuttingAccuracy = 25>
double shark::LCTree< VectorType, CuttingAccuracy >::squaredDistanceLowerBound ( VectorType const &  reference) const
inline
Compute the squared Euclidean distance of this cell to the given reference point, or alternatively a lower bound on this value.

Definition at line 114 of file LCTree.h.

References shark::BinaryTree< InputT >::distanceFromPlane(), shark::LCTree< VectorType, CuttingAccuracy >::mep_parent, and shark::LCTree< VectorType, CuttingAccuracy >::mp_right.

Member Data Documentation

◆ m_nodes

template<class VectorType = RealVector, int CuttingAccuracy = 25>
std::size_t shark::BinaryTree< InputT >::m_nodes
protected

number of nodes in the sub-tree represented by this node

Definition at line 361 of file BinaryTree.h.

Referenced by shark::LCTree< VectorType, CuttingAccuracy >::buildTree().

◆ m_normal

template<class VectorType = RealVector, int CuttingAccuracy = 25>
VectorType shark::LCTree< VectorType, CuttingAccuracy >::m_normal
protected

◆ m_size

template<class VectorType = RealVector, int CuttingAccuracy = 25>
std::size_t shark::BinaryTree< InputT >::m_size
protected

◆ mep_parent

template<class VectorType = RealVector, int CuttingAccuracy = 25>
BinaryTree* shark::BinaryTree< InputT >::mep_parent
protected

parent node

Definition at line 346 of file BinaryTree.h.

Referenced by shark::LCTree< VectorType, CuttingAccuracy >::squaredDistanceLowerBound().

◆ mp_indexList

template<class VectorType = RealVector, int CuttingAccuracy = 25>
std::size_t* shark::BinaryTree< InputT >::mp_indexList
protected

list of indices to points in the dataset

Definition at line 355 of file BinaryTree.h.

Referenced by shark::LCTree< VectorType, CuttingAccuracy >::buildTree(), and shark::LCTree< VectorType, CuttingAccuracy >::LCTree().

◆ mp_left

template<class VectorType = RealVector, int CuttingAccuracy = 25>
BinaryTree* shark::BinaryTree< InputT >::mp_left
protected

"left" child node

Definition at line 349 of file BinaryTree.h.

Referenced by shark::LCTree< VectorType, CuttingAccuracy >::buildTree().

◆ mp_right

template<class VectorType = RealVector, int CuttingAccuracy = 25>
BinaryTree* shark::BinaryTree< InputT >::mp_right
protected

The documentation for this class was generated from the following file: