BOOST_SERIALIZATION_SPLIT_MEMBER() | shark::ISerializable | |
C() const | shark::KernelSGDTrainer< InputType, CacheType > | inline |
cacheSize() const | shark::KernelSGDTrainer< InputType, CacheType > | inline |
ClassifierType typedef | shark::KernelSGDTrainer< InputType, CacheType > | |
ConstBatchInputReference typedef | shark::KernelSGDTrainer< InputType, CacheType > | |
DatasetType typedef | shark::AbstractTrainer< KernelClassifier< InputType > > | |
epochs() const | shark::KernelSGDTrainer< InputType, CacheType > | inline |
InputType typedef | shark::AbstractTrainer< KernelClassifier< InputType > > | |
isUnconstrained() const | shark::KernelSGDTrainer< InputType, CacheType > | inline |
kernel() | shark::KernelSGDTrainer< InputType, CacheType > | inline |
kernel() const | shark::KernelSGDTrainer< InputType, CacheType > | inline |
KernelMatrixType typedef | shark::KernelSGDTrainer< InputType, CacheType > | |
KernelSGDTrainer(KernelType *kernel, const LossType *loss, double C, bool offset, bool unconstrained=false, size_t cacheSize=0x4000000) | shark::KernelSGDTrainer< InputType, CacheType > | inline |
KernelType typedef | shark::KernelSGDTrainer< InputType, CacheType > | |
LabelType typedef | shark::AbstractTrainer< KernelClassifier< InputType > > | |
load(InArchive &archive, unsigned int version) | shark::ISerializable | inline |
LossType typedef | shark::KernelSGDTrainer< InputType, CacheType > | |
m_C | shark::KernelSGDTrainer< InputType, CacheType > | protected |
m_cacheSize | shark::KernelSGDTrainer< InputType, CacheType > | protected |
m_epochs | shark::KernelSGDTrainer< InputType, CacheType > | protected |
m_kernel | shark::KernelSGDTrainer< InputType, CacheType > | protected |
m_loss | shark::KernelSGDTrainer< InputType, CacheType > | protected |
m_offset | shark::KernelSGDTrainer< InputType, CacheType > | protected |
m_unconstrained | shark::KernelSGDTrainer< InputType, CacheType > | protected |
ModelType typedef | shark::KernelSGDTrainer< InputType, CacheType > | |
name() const | shark::KernelSGDTrainer< InputType, CacheType > | inlinevirtual |
numberOfParameters() const | shark::KernelSGDTrainer< InputType, CacheType > | inlinevirtual |
parameterVector() const | shark::KernelSGDTrainer< InputType, CacheType > | inlinevirtual |
ParameterVectorType typedef | shark::IParameterizable< VectorType > | |
PartlyPrecomputedMatrixType typedef | shark::KernelSGDTrainer< InputType, CacheType > | |
QpFloatType typedef | shark::KernelSGDTrainer< InputType, CacheType > | |
read(InArchive &archive) | shark::ISerializable | inlinevirtual |
save(OutArchive &archive, unsigned int version) const | shark::ISerializable | inline |
setC(double value) | shark::KernelSGDTrainer< InputType, CacheType > | inline |
setCacheSize(std::size_t size) | shark::KernelSGDTrainer< InputType, CacheType > | inline |
setEpochs(std::size_t value) | shark::KernelSGDTrainer< InputType, CacheType > | inline |
setKernel(KernelType *kernel) | shark::KernelSGDTrainer< InputType, CacheType > | inline |
setParameterVector(RealVector const &newParameters) | shark::KernelSGDTrainer< InputType, CacheType > | inlinevirtual |
train(ClassifierType &classifier, const LabeledData< InputType, unsigned int > &dataset) | shark::KernelSGDTrainer< InputType, CacheType > | inline |
AbstractTrainer< KernelClassifier< InputType > >::train(ModelType &model, DatasetType const &dataset)=0 | shark::AbstractTrainer< KernelClassifier< InputType > > | pure virtual |
trainOffset() const | shark::KernelSGDTrainer< InputType, CacheType > | inline |
write(OutArchive &archive) const | shark::ISerializable | inlinevirtual |
~INameable() | shark::INameable | inlinevirtual |
~IParameterizable() | shark::IParameterizable< VectorType > | inlinevirtual |
~ISerializable() | shark::ISerializable | inlinevirtual |