|
| CMSA (random::rng_type &rng=random::globalRng) |
| Default c'tor.
|
|
std::string | name () const |
| From INameable: return the class name.
|
|
SHARK_EXPORT_SYMBOL void | read (InArchive &archive) |
| Read the component from the supplied archive.
|
|
SHARK_EXPORT_SYMBOL void | write (OutArchive &archive) const |
| Write the component to the supplied archive.
|
|
SHARK_EXPORT_SYMBOL void | init (ObjectiveFunctionType const &function, SearchPointType const &p) |
| Initializes the algorithm for the supplied objective function.
|
|
SHARK_EXPORT_SYMBOL void | init (ObjectiveFunctionType const &function, SearchPointType const &initialSearchPoint, std::size_t lambda, std::size_t mu, double initialSigma, const boost::optional< RealMatrix > &initialCovarianceMatrix=boost::optional< RealMatrix >()) |
| Initializes the algorithm for the supplied objective function.
|
|
SHARK_EXPORT_SYMBOL void | step (ObjectiveFunctionType const &function) |
| Executes one iteration of the algorithm.
|
|
void | setInitialSigma (double initSigma) |
| sets the initial step length sigma
|
|
void | setMu (std::size_t mu) |
| Sets the number of selected samples.
|
|
void | setLambda (std::size_t lambda) |
| Sets the number of sampled points.
|
|
std::size_t | mu () const |
| Accesses the size of the parent population.
|
|
std::size_t | lambda () const |
| Accesses the size of the offspring population.
|
|
RealVector | eigenValues () const |
|
double | sigma () const |
|
std::size_t | numInitPoints () const |
| By default most single objective optimizers only require a single point.
|
|
virtual void | init (ObjectiveFunctionType const &function, std::vector< SearchPointType > const &initPoints) |
| Initialize the optimizer for the supplied objective function using a set of initialisation points.
|
|
virtual const SolutionType & | solution () const |
| returns the current solution of the optimizer
|
|
const Features & | features () const |
|
virtual void | updateFeatures () |
|
bool | requiresValue () const |
|
bool | requiresFirstDerivative () const |
|
bool | requiresSecondDerivative () const |
|
bool | canSolveConstrained () const |
|
bool | requiresClosestFeasible () const |
|
virtual | ~AbstractOptimizer () |
|
virtual void | init (ObjectiveFunctionType const &function) |
| Initialize the optimizer for the supplied objective function.
|
|
virtual void | init (ObjectiveFunctionType const &function, std::vector< SearchPointType > const &initPoints)=0 |
| Initialize the optimizer for the supplied objective function using a set of initialisation points.
|
|
virtual void | step (ObjectiveFunctionType const &function)=0 |
| Carry out one step of the optimizer for the supplied objective function.
|
|
virtual | ~INameable () |
|
virtual | ~ISerializable () |
| Virtual d'tor.
|
|
void | load (InArchive &archive, unsigned int version) |
| Versioned loading of components, calls read(...).
|
|
void | save (OutArchive &archive, unsigned int version) const |
| Versioned storing of components, calls write(...).
|
|
| BOOST_SERIALIZATION_SPLIT_MEMBER () |
|
Implements the CMSA.
The algorithm is described in
H. G. Beyer, B. Sendhoff (2008). Covariance Matrix Adaptation Revisited: The CMSA Evolution Strategy In Proceedings of the Tenth International Conference on Parallel Problem Solving from Nature (PPSN X), pp. 123-132, LNCS, Springer-Verlag
Definition at line 63 of file CMSA.h.