Implements the CMA-ES. More...
#include <shark/Algorithms/DirectSearch/CMA.h>
Public Member Functions | |
SHARK_EXPORT_SYMBOL | CMA (random::rng_type &rng=random::globalRng) |
Default c'tor. | |
std::string | name () const |
From INameable: return the class name. | |
SHARK_EXPORT_SYMBOL void | read (InArchive &archive) |
Read the component from the supplied archive. | |
SHARK_EXPORT_SYMBOL void | write (OutArchive &archive) const |
Write the component to the supplied archive. | |
SHARK_EXPORT_SYMBOL void | init (ObjectiveFunctionType const &function, SearchPointType const &p) |
Initializes the algorithm for the supplied objective function. | |
SHARK_EXPORT_SYMBOL void | init (ObjectiveFunctionType const &function, SearchPointType const &initialSearchPoint, std::size_t lambda, std::size_t mu, double initialSigma, const boost::optional< RealMatrix > &initialCovarianceMatrix=boost::optional< RealMatrix >()) |
Initializes the algorithm for the supplied objective function. | |
SHARK_EXPORT_SYMBOL void | step (ObjectiveFunctionType const &function) |
Executes one iteration of the algorithm. | |
void | setInitialSigma (double initSigma) |
sets the initial step length sigma | |
double | sigma () const |
Accesses the current step size. | |
RealVector const & | mean () const |
Accesses the current population mean. | |
RealVector const & | weights () const |
Accesses the current weighting vector. | |
RealVector const & | evolutionPath () const |
Accesses the evolution path for the covariance matrix update. | |
RealVector const & | evolutionPathSigma () const |
Accesses the evolution path for the step size update. | |
RealMatrix const & | covarianceMatrix () const |
Accesses the covariance matrix of the normal distribution used for generating offspring individuals. | |
RecombinationType | recombinationType () const |
Accesses the recombination type. | |
RecombinationType & | recombinationType () |
Returns a mutable reference to the recombination type. | |
const double & | lowerBound () const |
Returns a const reference to the lower bound on sigma times smalles eigenvalue. | |
void | setLowerBound (double lowerBound) |
Set the lower bound on sigma times smalles eigenvalue. | |
std::size_t | mu () const |
Returns the size of the parent population \(\mu\). | |
void | setMu (std::size_t mu) |
Sets the number of selected samples. | |
void | setLambda (std::size_t lambda) |
Sets the number of sampled points. | |
std::size_t | lambda () const |
Returns a immutable reference to the size of the offspring population \(\mu\). | |
RealMatrix const & | eigenVectors () const |
Returns eigenvectors of covariance matrix (not considering step size) | |
RealVector const & | eigenValues () const |
Returns a eigenvectors of covariance matrix (not considering step size) | |
double | condition () const |
Returns condition of covariance matrix. | |
std::size_t | numberOfEvaluations () const |
Returns how often a point is evaluated. | |
Public Member Functions inherited from shark::AbstractSingleObjectiveOptimizer< RealVector > | |
std::size_t | numInitPoints () const |
By default most single objective optimizers only require a single point. | |
virtual void | init (ObjectiveFunctionType const &function, std::vector< SearchPointType > const &initPoints) |
Initialize the optimizer for the supplied objective function using a set of initialisation points. | |
virtual const SolutionType & | solution () const |
returns the current solution of the optimizer | |
Public Member Functions inherited from shark::AbstractOptimizer< PointType, ResultT, SolutionTypeT > | |
const Features & | features () const |
virtual void | updateFeatures () |
bool | requiresValue () const |
bool | requiresFirstDerivative () const |
bool | requiresSecondDerivative () const |
bool | canSolveConstrained () const |
bool | requiresClosestFeasible () const |
virtual | ~AbstractOptimizer () |
virtual void | init (ObjectiveFunctionType const &function) |
Initialize the optimizer for the supplied objective function. | |
virtual void | init (ObjectiveFunctionType const &function, std::vector< SearchPointType > const &initPoints)=0 |
Initialize the optimizer for the supplied objective function using a set of initialisation points. | |
virtual void | step (ObjectiveFunctionType const &function)=0 |
Carry out one step of the optimizer for the supplied objective function. | |
Public Member Functions inherited from shark::INameable | |
virtual | ~INameable () |
Public Member Functions inherited from shark::ISerializable | |
virtual | ~ISerializable () |
Virtual d'tor. | |
void | load (InArchive &archive, unsigned int version) |
Versioned loading of components, calls read(...). | |
void | save (OutArchive &archive, unsigned int version) const |
Versioned storing of components, calls write(...). | |
BOOST_SERIALIZATION_SPLIT_MEMBER () | |
Static Public Member Functions | |
static SHARK_EXPORT_SYMBOL std::size_t | suggestLambda (std::size_t dimension) |
Calculates lambda for the supplied dimensionality n. | |
static SHARK_EXPORT_SYMBOL std::size_t | suggestMu (std::size_t lambda, RecombinationType recomb=SUPERLINEAR) |
Calculates mu for the supplied lambda and the recombination strategy. | |
Protected Types | |
typedef Individual< RealVector, double, RealVector > | IndividualType |
The type of individual used for the CMA. | |
Protected Member Functions | |
SHARK_EXPORT_SYMBOL std::vector< IndividualType > | generateOffspring () const |
Samples lambda individuals from the search distribution | |
SHARK_EXPORT_SYMBOL void | updatePopulation (std::vector< IndividualType > const &offspring) |
Updates the strategy parameters based on the supplied offspring population. | |
SHARK_EXPORT_SYMBOL void | doInit (std::vector< SearchPointType > const &points, std::vector< ResultType > const &functionValues, std::size_t lambda, std::size_t mu, double initialSigma) |
Protected Member Functions inherited from shark::AbstractOptimizer< PointType, ResultT, SolutionTypeT > | |
void | checkFeatures (ObjectiveFunctionType const &objectiveFunction) |
Convenience function that checks whether the features of the supplied objective function match with the required features of the optimizer. | |
Additional Inherited Members | |
Protected Attributes inherited from shark::AbstractSingleObjectiveOptimizer< RealVector > | |
SolutionType | m_best |
Current solution of the optimizer. | |
Protected Attributes inherited from shark::AbstractOptimizer< PointType, ResultT, SolutionTypeT > | |
Features | m_features |
Implements the CMA-ES.
The algorithm is described in
Hansen, N., S. Kern (2004). Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In Proceedings of the Eighth International Conference on Parallel Problem Solving from Nature (PPSN VIII), pp. 282-291, LNCS, Springer-Verlag
For noisy function, noise handling is supported using the noise level detection algorithm described in Hansen, N., et al. "A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion." IEEE Transactions on Evolutionary Computation 13.1 (2009): 180-197. Our implementation varies in small details, e.g. instead of the average rank the rank of the average function value is used for updating the strategy parameters which ensures asymptotic unbiasedness. We further do not have an upper bound on the number of reevaluations for the same reason.
|
protected |
SHARK_EXPORT_SYMBOL shark::CMA::CMA | ( | random::rng_type & | rng = random::globalRng | ) |
Default c'tor.
|
inline |
Returns condition of covariance matrix.
Definition at line 198 of file CMA.h.
References eigenValues(), and shark::MultiVariateNormalDistribution::eigenValues().
Referenced by main().
|
inline |
Accesses the covariance matrix of the normal distribution used for generating offspring individuals.
Definition at line 142 of file CMA.h.
References shark::MultiVariateNormalDistribution::covarianceMatrix().
|
protected |
|
inline |
Returns a eigenvectors of covariance matrix (not considering step size)
Definition at line 193 of file CMA.h.
References shark::MultiVariateNormalDistribution::eigenValues().
Referenced by condition(), and main().
|
inline |
Returns eigenvectors of covariance matrix (not considering step size)
Definition at line 188 of file CMA.h.
References shark::MultiVariateNormalDistribution::eigenVectors().
Referenced by main().
|
inline |
|
inline |
|
protected |
Samples lambda individuals from the search distribution
SHARK_EXPORT_SYMBOL void shark::CMA::init | ( | ObjectiveFunctionType const & | function, |
SearchPointType const & | initialSearchPoint, | ||
std::size_t | lambda, | ||
std::size_t | mu, | ||
double | initialSigma, | ||
const boost::optional< RealMatrix > & | initialCovarianceMatrix = boost::optional< RealMatrix >() |
||
) |
Initializes the algorithm for the supplied objective function.
|
virtual |
Initializes the algorithm for the supplied objective function.
Implements shark::AbstractSingleObjectiveOptimizer< RealVector >.
|
inline |
Returns a immutable reference to the size of the offspring population \(\mu\).
Definition at line 183 of file CMA.h.
Referenced by setLambda().
|
inline |
Returns a const reference to the lower bound on sigma times smalles eigenvalue.
Definition at line 157 of file CMA.h.
Referenced by setLowerBound().
|
inline |
|
inline |
|
inlinevirtual |
From INameable: return the class name.
Reimplemented from shark::INameable.
|
inline |
|
virtual |
Read the component from the supplied archive.
[in,out] | archive | The archive to read from. |
Reimplemented from shark::ISerializable.
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
Set the lower bound on sigma times smalles eigenvalue.
Definition at line 162 of file CMA.h.
References lowerBound().
|
inline |
|
inline |
SHARK_EXPORT_SYMBOL void shark::CMA::step | ( | ObjectiveFunctionType const & | function | ) |
|
static |
Calculates lambda for the supplied dimensionality n.
|
static |
Calculates mu for the supplied lambda and the recombination strategy.
|
protected |
Updates the strategy parameters based on the supplied offspring population.
|
inline |
|
virtual |
Write the component to the supplied archive.
[in,out] | archive | The archive to write to. |
Reimplemented from shark::ISerializable.