Adaptive Moment Estimation Algorithm (ADAM) More...
#include <shark/Algorithms/GradientDescent/Adam.h>
 Inheritance diagram for shark::Adam< SearchPointType >:
 Inheritance diagram for shark::Adam< SearchPointType >:| Public Types | |
| typedef AbstractObjectiveFunction< SearchPointType, double > | ObjectiveFunctionType | 
|  Public Types inherited from shark::AbstractSingleObjectiveOptimizer< PointType > | |
| typedef base_type::SearchPointType | SearchPointType | 
| typedef base_type::SolutionType | SolutionType | 
| typedef base_type::ResultType | ResultType | 
| typedef base_type::ObjectiveFunctionType | ObjectiveFunctionType | 
|  Public Types inherited from shark::AbstractOptimizer< PointType, double, SingleObjectiveResultSet< PointType > > | |
| enum | Feature | 
| Models features that the optimizer requires from the objective function.  More... | |
| typedef PointType | SearchPointType | 
| typedef double | ResultType | 
| typedef SingleObjectiveResultSet< PointType > | SolutionType | 
| typedef AbstractObjectiveFunction< PointType, ResultType > | ObjectiveFunctionType | 
| typedef TypedFlags< Feature > | Features | 
| typedef TypedFeatureNotAvailableException< Feature > | FeatureNotAvailableException | 
| Public Member Functions | |
| Adam () | |
| std::string | name () const | 
| From INameable: return the class name. | |
| void | init (ObjectiveFunctionType const &objectiveFunction, SearchPointType const &startingPoint) | 
| double | eta () const | 
| get learning rate eta | |
| void | setEta (double eta) | 
| set learning rate eta | |
| double | beta1 () const | 
| get gradient averaging parameter beta1 | |
| void | setBeta1 (double beta1) | 
| set gradient averaging parameter beta1 | |
| double | beta2 () const | 
| get gradient averaging parameter beta2 | |
| void | setBeta2 (double beta2) | 
| set gradient averaging parameter beta2 | |
| double | epsilon () const | 
| get minimum noise estimate epsilon | |
| void | setEpsilon (double epsilon) | 
| set minimum noise estimate epsilon | |
| void | step (ObjectiveFunctionType const &objectiveFunction) | 
| Performs a step of the optimization. | |
| virtual void | read (InArchive &archive) | 
| Read the component from the supplied archive. | |
| virtual void | write (OutArchive &archive) const | 
| Write the component to the supplied archive. | |
|  Public Member Functions inherited from shark::AbstractSingleObjectiveOptimizer< PointType > | |
| std::size_t | numInitPoints () const | 
| By default most single objective optimizers only require a single point. | |
| virtual void | init (ObjectiveFunctionType const &function, std::vector< SearchPointType > const &initPoints) | 
| Initialize the optimizer for the supplied objective function using a set of initialisation points. | |
| virtual void | init (ObjectiveFunctionType const &function, SearchPointType const &startingPoint)=0 | 
| initializes the optimizer using a predefined starting point | |
| virtual const SolutionType & | solution () const | 
| returns the current solution of the optimizer | |
|  Public Member Functions inherited from shark::AbstractOptimizer< PointType, double, SingleObjectiveResultSet< PointType > > | |
| const Features & | features () const | 
| virtual void | updateFeatures () | 
| bool | requiresValue () const | 
| bool | requiresFirstDerivative () const | 
| bool | requiresSecondDerivative () const | 
| bool | canSolveConstrained () const | 
| bool | requiresClosestFeasible () const | 
| virtual | ~AbstractOptimizer () | 
| virtual void | init (ObjectiveFunctionType const &function) | 
| Initialize the optimizer for the supplied objective function. | |
| virtual void | step (ObjectiveFunctionType const &function)=0 | 
| Carry out one step of the optimizer for the supplied objective function. | |
|  Public Member Functions inherited from shark::INameable | |
| virtual | ~INameable () | 
|  Public Member Functions inherited from shark::ISerializable | |
| virtual | ~ISerializable () | 
| Virtual d'tor. | |
| void | load (InArchive &archive, unsigned int version) | 
| Versioned loading of components, calls read(...). | |
| void | save (OutArchive &archive, unsigned int version) const | 
| Versioned storing of components, calls write(...). | |
| BOOST_SERIALIZATION_SPLIT_MEMBER () | |
| Additional Inherited Members | |
|  Protected Member Functions inherited from shark::AbstractOptimizer< PointType, double, SingleObjectiveResultSet< PointType > > | |
| void | checkFeatures (ObjectiveFunctionType const &objectiveFunction) | 
| Convenience function that checks whether the features of the supplied objective function match with the required features of the optimizer. | |
|  Protected Attributes inherited from shark::AbstractSingleObjectiveOptimizer< PointType > | |
| SolutionType | m_best | 
| Current solution of the optimizer. | |
|  Protected Attributes inherited from shark::AbstractOptimizer< PointType, double, SingleObjectiveResultSet< PointType > > | |
| Features | m_features | 
Adaptive Moment Estimation Algorithm (ADAM)
Performs SGD by using a long term average of the gradient as well as its second moment to adapt a step size for each coordinate.
| typedef AbstractObjectiveFunction<SearchPointType,double> shark::Adam< SearchPointType >::ObjectiveFunctionType | 
| 
 | inline | 
| 
 | inline | 
get gradient averaging parameter beta1
Definition at line 91 of file Adam.h.
Referenced by shark::Adam< SearchPointType >::setBeta1().
| 
 | inline | 
get gradient averaging parameter beta2
Definition at line 102 of file Adam.h.
Referenced by shark::Adam< SearchPointType >::setBeta2().
| 
 | inline | 
get minimum noise estimate epsilon
Definition at line 113 of file Adam.h.
Referenced by shark::Adam< SearchPointType >::setEpsilon().
| 
 | inline | 
get learning rate eta
Definition at line 80 of file Adam.h.
Referenced by shark::Adam< SearchPointType >::setEta().
| 
 | inline | 
Definition at line 64 of file Adam.h.
References shark::AbstractOptimizer< PointType, double, SingleObjectiveResultSet< PointType > >::checkFeatures(), shark::AbstractObjectiveFunction< PointType, ResultT >::evalDerivative(), shark::AbstractSingleObjectiveOptimizer< PointType >::m_best, shark::AbstractObjectiveFunction< PointType, ResultT >::numberOfVariables(), shark::ResultSet< SearchPointT, ResultT >::point, SHARK_RUNTIME_CHECK, and shark::ResultSet< SearchPointT, ResultT >::value.
Referenced by main().
| 
 | inlinevirtual | 
From INameable: return the class name.
Reimplemented from shark::INameable.
| 
 | inlinevirtual | 
Read the component from the supplied archive.
| [in,out] | archive | The archive to read from. | 
Reimplemented from shark::ISerializable.
Definition at line 143 of file Adam.h.
References shark::AbstractSingleObjectiveOptimizer< PointType >::m_best.
| 
 | inline | 
set gradient averaging parameter beta1
Definition at line 96 of file Adam.h.
References shark::Adam< SearchPointType >::beta1(), and SHARK_RUNTIME_CHECK.
| 
 | inline | 
set gradient averaging parameter beta2
Definition at line 107 of file Adam.h.
References shark::Adam< SearchPointType >::beta2(), and SHARK_RUNTIME_CHECK.
| 
 | inline | 
set minimum noise estimate epsilon
Definition at line 118 of file Adam.h.
References shark::Adam< SearchPointType >::epsilon(), and SHARK_RUNTIME_CHECK.
| 
 | inline | 
set learning rate eta
Definition at line 85 of file Adam.h.
References shark::Adam< SearchPointType >::eta(), and SHARK_RUNTIME_CHECK.
Referenced by main().
| 
 | inline | 
Performs a step of the optimization.
First the current guess for gradient and its second moment are updated using
\[ g_t = \beta_1 g_{t-1} + (1-\beta1) \frac{\partial}{\partial x} f(x_{t-1})\]
\[ v_t = \beta_2 v_{t-1} + (1-\beta2) (\frac{\partial}{\partial x} f(x_{t-1}))^2\]
The step is then performed as
\[ x_{t} = x_{t-1} - \eta * g_t *(sqrt(v_t) + \epsilon)^{-1} \]
where a slight step correction is used to remove the bias in the first few iterations where the means are close to 0.
Definition at line 131 of file Adam.h.
References shark::AbstractObjectiveFunction< PointType, ResultT >::evalDerivative(), shark::AbstractSingleObjectiveOptimizer< PointType >::m_best, shark::ResultSet< SearchPointT, ResultT >::point, shark::sqr(), and shark::ResultSet< SearchPointT, ResultT >::value.
Referenced by main().
| 
 | inlinevirtual | 
Write the component to the supplied archive.
| [in,out] | archive | The archive to write to. | 
Reimplemented from shark::ISerializable.
Definition at line 156 of file Adam.h.
References shark::AbstractSingleObjectiveOptimizer< PointType >::m_best.