12int main(
int argc, 
char **argv)
 
   15        std::cerr << 
"usage: " << argv[0] << 
" path/to/mnist_subset.libsvm" << std::endl;
 
   18    std::size_t hidden1 = 200;
 
   19    std::size_t hidden2 = 100;
 
   20    std::size_t iterations = 1000;
 
   33    DenseLayer layer1(inputDim,hidden1, 
true);
 
   34    DenseLayer layer2(hidden1,hidden2, 
true);
 
   36    auto network = layer1 >> layer2 >> output;
 
   42    std::cout<<
"training network"<<std::endl;
 
   46    optimizer.
init(error);
 
   47    for(std::size_t i = 0; i != iterations; ++i){
 
   48        optimizer.
step(error);
 
   56    std::cout << 
"classification error,train: " << loss01.
eval(data.
labels(), predictionTrain) << std::endl;
 
   59    std::cout << 
"classification error,test: " << loss01.
eval(test.labels(), prediction) << std::endl;