Solver for the multi-class SVM with absolute margin and total sum loss. More...
#include <shark/Algorithms/QP/QpMcLinear.h>
 Inheritance diagram for shark::QpMcLinearATS< InputT >:
 Inheritance diagram for shark::QpMcLinearATS< InputT >:| Public Types | |
| typedef LabeledData< InputT, unsigned int > | DatasetType | 
|  Public Types inherited from shark::QpMcLinear< InputT > | |
| enum | CoordinateSelectionStrategy { UNIFORM , ACF } | 
| typedef LabeledData< InputT, unsigned int > | DatasetType | 
| typedef LabeledData< InputT, unsignedint >::const_element_reference | ElementType | 
| typedef Batch< InputT >::const_reference | InputReferenceType | 
| Public Member Functions | |
| QpMcLinearATS (const DatasetType &dataset, std::size_t dim, std::size_t classes) | |
| Constructor. | |
|  Public Member Functions inherited from shark::QpMcLinear< InputT > | |
| QpMcLinear (const DatasetType &dataset, std::size_t dim, std::size_t classes, std::size_t strategy=ACF, bool shrinking=false) | |
| Constructor. | |
| RealMatrix | solve (random::rng_type &rng, double C, QpStoppingCondition &stop, QpSolutionProperties *prop=NULL, bool verbose=false) | 
| Solve the SVM training problem. | |
| Protected Member Functions | |
| virtual double | calcGradient (RealVector &gradient, RealVector wx, blas::dense_vector_adaptor< double const > const &alpha, double C, unsigned int y) | 
| Compute the gradient from the inner products of the weight vectors with the current sample. | |
| virtual void | updateWeightVectors (RealMatrix &w, RealVector const &mu, std::size_t index) | 
| Update the weight vectors (primal variables) after a step on the dual variables. | |
| virtual double | solveSub (double epsilon, RealVector &gradient, double q, double C, unsigned int y, blas::dense_vector_adaptor< double > &alpha, RealVector &mu) | 
| Solve the sub-problem posed by a single training example. | |
|  Protected Member Functions inherited from shark::QpMcLinear< InputT > | |
| void | add_scaled (RealMatrix &w, RealVector const &mu, InputReferenceType x) | 
| Additional Inherited Members | |
|  Protected Attributes inherited from shark::QpMcLinear< InputT > | |
| DataView< const DatasetType > | m_data | 
| view on training data | |
| RealVector | m_xSquared | 
| diagonal entries of the quadratic matrix | |
| std::size_t | m_dim | 
| input space dimension | |
| std::size_t | m_classes | 
| number of classes | |
| std::size_t | m_strategy | 
| strategy for coordinate selection | |
| bool | m_shrinking | 
| apply shrinking or not? | |
Solver for the multi-class SVM with absolute margin and total sum loss.
Definition at line 611 of file QpMcLinear.h.
| typedef LabeledData<InputT, unsigned int> shark::QpMcLinearATS< InputT >::DatasetType | 
Definition at line 614 of file QpMcLinear.h.
| 
 | inline | 
Constructor.
Definition at line 617 of file QpMcLinear.h.
| 
 | inlineprotectedvirtual | 
Compute the gradient from the inner products of the weight vectors with the current sample.
Implements shark::QpMcLinear< InputT >.
Definition at line 626 of file QpMcLinear.h.
References shark::QpMcLinear< InputT >::m_classes.
| 
 | inlineprotectedvirtual | 
Solve the sub-problem posed by a single training example.
Implements shark::QpMcLinear< InputT >.
Definition at line 652 of file QpMcLinear.h.
References shark::QpMcLinear< InputT >::m_classes.
| 
 | inlineprotectedvirtual | 
Update the weight vectors (primal variables) after a step on the dual variables.
Implements shark::QpMcLinear< InputT >.
Definition at line 640 of file QpMcLinear.h.
References shark::QpMcLinear< InputT >::add_scaled(), shark::QpMcLinear< InputT >::m_classes, shark::QpMcLinear< InputT >::m_data, and shark::mean().