shark::HuberLoss Class Reference

Huber-loss for for robust regression. More...

#include <shark/ObjectiveFunctions/Loss/HuberLoss.h>

+ Inheritance diagram for shark::HuberLoss:

Public Member Functions

 HuberLoss (double delta=1.0)
 constructor
 
std::string name () const
 Returns class name "HuberLoss".
 
double eval (BatchLabelType const &labels, BatchOutputType const &predictions) const
 calculates the sum of all
 
double evalDerivative (BatchLabelType const &labels, BatchOutputType const &predictions, BatchOutputType &gradient) const
 evaluate the loss and the derivative w.r.t. the prediction
 
- Public Member Functions inherited from shark::AbstractLoss< RealVector, RealVector >
 AbstractLoss ()
 
virtual double eval (ConstLabelReference target, ConstOutputReference prediction) const
 evaluate the loss for a target and a prediction
 
double eval (Data< LabelType > const &targets, Data< OutputType > const &predictions) const
 
virtual double evalDerivative (ConstLabelReference target, ConstOutputReference prediction, OutputType &gradient) const
 evaluate the loss and its derivative for a target and a prediction
 
virtual double evalDerivative (ConstLabelReference target, ConstOutputReference prediction, OutputType &gradient, MatrixType &hessian) const
 evaluate the loss and its first and second derivative for a target and a prediction
 
double operator() (LabelType const &target, OutputType const &prediction) const
 evaluate the loss for a target and a prediction
 
double operator() (BatchLabelType const &target, BatchOutputType const &prediction) const
 
- Public Member Functions inherited from shark::AbstractCost< LabelT, OutputT >
virtual ~AbstractCost ()
 
const Featuresfeatures () const
 
virtual void updateFeatures ()
 
bool hasFirstDerivative () const
 returns true when the first parameter derivative is implemented
 
bool isLossFunction () const
 returns true when the cost function is in fact a loss function
 
virtual double eval (Data< LabelType > const &targets, Data< OutputType > const &predictions) const =0
 
double operator() (Data< LabelType > const &targets, Data< OutputType > const &predictions) const
 
- Public Member Functions inherited from shark::INameable
virtual ~INameable ()
 

Additional Inherited Members

- Public Types inherited from shark::AbstractLoss< RealVector, RealVector >
typedef RealVector OutputType
 
typedef RealVector LabelType
 
typedef RealMatrix MatrixType
 
typedef Batch< OutputType >::type BatchOutputType
 
typedef Batch< LabelType >::type BatchLabelType
 
typedef ConstProxyReference< LabelTypeconst >::type ConstLabelReference
 Const references to LabelType.
 
typedef ConstProxyReference< OutputTypeconst >::type ConstOutputReference
 Const references to OutputType.
 
- Public Types inherited from shark::AbstractCost< LabelT, OutputT >
enum  Feature { HAS_FIRST_DERIVATIVE = 1 , HAS_SECOND_DERIVATIVE = 2 , IS_LOSS_FUNCTION = 4 }
 list of features a cost function can have More...
 
typedef OutputT OutputType
 
typedef LabelT LabelType
 
typedef Batch< OutputType >::type BatchOutputType
 
typedef Batch< LabelType >::type BatchLabelType
 
typedef TypedFlags< FeatureFeatures
 
typedef TypedFeatureNotAvailableException< FeatureFeatureNotAvailableException
 
- Protected Attributes inherited from shark::AbstractCost< LabelT, OutputT >
Features m_features
 

Detailed Description

Huber-loss for for robust regression.

The Huber loss is a function that is quadratic if \( ||f(x)-y||_2 \leq \delta \). Outside this region, whn the error is larger, it is defined as a linear continuation. The function is once but not twice differentiable. This loss is important for regression as it weights outliers lower than ordinary least squares regression while still preserving a convex shape of the loss function.

Please not that, due to its nature, the error function is not scale invariant. thus rescaling the dataset changes the behaviour. This function has the hyper parameter delta which marks thee region where the function changes from quadratic to linear.

Definition at line 49 of file HuberLoss.h.

Constructor & Destructor Documentation

◆ HuberLoss()

shark::HuberLoss::HuberLoss ( double  delta = 1.0)
inline

constructor

Definition at line 53 of file HuberLoss.h.

References shark::AbstractCost< LabelT, OutputT >::m_features.

Member Function Documentation

◆ eval()

double shark::HuberLoss::eval ( BatchLabelType const &  labels,
BatchOutputType const &  predictions 
) const
inlinevirtual

calculates the sum of all

Implements shark::AbstractLoss< RealVector, RealVector >.

Definition at line 63 of file HuberLoss.h.

References SIZE_CHECK, and shark::sqr().

◆ evalDerivative()

double shark::HuberLoss::evalDerivative ( BatchLabelType const &  target,
BatchOutputType const &  prediction,
BatchOutputType gradient 
) const
inlinevirtual

evaluate the loss and the derivative w.r.t. the prediction

The default implementations throws an exception. If you overwrite this method, don't forget to set the flag HAS_FIRST_DERIVATIVE.
Parameters
targettarget value
predictionprediction, typically made by a model
gradientthe gradient of the loss function with respect to the prediction

Reimplemented from shark::AbstractLoss< RealVector, RealVector >.

Definition at line 83 of file HuberLoss.h.

References SIZE_CHECK, and shark::sqr().

◆ name()

std::string shark::HuberLoss::name ( ) const
inlinevirtual

Returns class name "HuberLoss".

Reimplemented from shark::INameable.

Definition at line 58 of file HuberLoss.h.


The documentation for this class was generated from the following file: