A DataDistribution defines an unsupervised learning problem. More...
#include <shark/Data/DataDistribution.h>
Public Member Functions | |
virtual | ~DataDistribution () |
Virtual destructor. | |
virtual void | draw (InputType &input) const =0 |
Generates a single pair of input and label. | |
InputType | operator() () |
UnlabeledData< InputType > | generateDataset (std::size_t size, std::size_t maximumBatchSize) const |
Generates a data set with samples from from the distribution. | |
UnlabeledData< InputType > | generateDataset (std::size_t size) const |
Generates a data set with samples from from the distribution. | |
A DataDistribution defines an unsupervised learning problem.
Definition at line 57 of file DataDistribution.h.
|
inlinevirtual |
Virtual destructor.
Definition at line 61 of file DataDistribution.h.
|
pure virtual |
Generates a single pair of input and label.
input | the generated input |
Implemented in shark::NormalDistributedPoints, and shark::ImagePatches.
Referenced by shark::DataDistribution< InputType >::generateDataset(), and shark::DataDistribution< InputType >::operator()().
|
inline |
Generates a data set with samples from from the distribution.
size | the number of samples in the dataset |
Definition at line 93 of file DataDistribution.h.
References shark::DataDistribution< InputType >::generateDataset().
|
inline |
Generates a data set with samples from from the distribution.
size | the number of samples in the dataset |
maximumBatchSize | the maximum size of a batch |
Definition at line 79 of file DataDistribution.h.
References shark::createUnlabeledDataFromRange(), and shark::DataDistribution< InputType >::draw().
Referenced by shark::DataDistribution< InputType >::generateDataset().
|
inline |
Definition at line 69 of file DataDistribution.h.
References shark::DataDistribution< InputType >::draw().