linearRegressionTutorial.cpp
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief Linear Regression Tutorial Sample Code
6 *
7 * This file is part of the "Linear Regression" tutorial.
8 * It requires some toy sample data that comes with the library.
9 *
10 *
11 *
12 * \author C. Igel
13 * \date 2011
14 *
15 *
16 * \par Copyright 1995-2017 Shark Development Team
17 *
18 * <BR><HR>
19 * This file is part of Shark.
20 * <https://shark-ml.github.io/Shark/>
21 *
22 * Shark is free software: you can redistribute it and/or modify
23 * it under the terms of the GNU Lesser General Public License as published
24 * by the Free Software Foundation, either version 3 of the License, or
25 * (at your option) any later version.
26 *
27 * Shark is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public License
33 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
34 *
35 */
36//===========================================================================
37
38#include <shark/Data/Csv.h>
41
42#include <iostream>
43
44using namespace shark;
45using namespace std;
46
47int main(int argc, char **argv) {
48 if(argc < 3) {
49 cerr << "usage: " << argv[0] << " (file with inputs/independent variables) (file with outputs/dependent variables)" << endl;
50 exit(EXIT_FAILURE);
51 }
52 Data<RealVector> inputs;
53 Data<RealVector> labels;
54 try {
55 importCSV(inputs, argv[1], ' ');
56 }
57 catch (...) {
58 cerr << "unable to read input data from file " << argv[1] << endl;
59 exit(EXIT_FAILURE);
60 }
61
62 try {
63 importCSV(labels, argv[2]);
64 }
65 catch (...) {
66 cerr << "unable to read labels from file " << argv[2] << endl;
67 exit(EXIT_FAILURE);
68 }
69
70 RegressionDataset data(inputs, labels);
71
72
73
74 // trainer and model
75 LinearRegression trainer;
76 LinearModel<> model;
77
78 // train model
79 trainer.train(model, data);
80
81 // show model parameters
82 cout << "intercept: " << model.offset() << endl;
83 cout << "matrix: " << model.matrix() << endl;
84
85 SquaredLoss<> loss;
86 Data<RealVector> prediction = model(data.inputs());
87 cout << "squared loss: " << loss(data.labels(), prediction) << endl;
88}