syev.hpp
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief Contains the lapack bindings for the symmetric eigenvalue problem syev.
6 *
7 * \author O. Krause
8 * \date 2010
9 *
10 *
11 * \par Copyright 1995-2015 Shark Development Team
12 *
13 * <BR><HR>
14 * This file is part of Shark.
15 * <http://image.diku.dk/shark/>
16 *
17 * Shark is free software: you can redistribute it and/or modify
18 * it under the terms of the GNU Lesser General Public License as published
19 * by the Free Software Foundation, either version 3 of the License, or
20 * (at your option) any later version.
21 *
22 * Shark is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU Lesser General Public License for more details.
26 *
27 * You should have received a copy of the GNU Lesser General Public License
28 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
29 *
30 */
31//===========================================================================
32#ifndef REMORA_KERNELS_LAPACK_SYEV_HPP
33#define REMORA_KERNELS_LAPACK_SYEV_HPP
34
35#include "fortran.hpp"
36#include "../../detail/traits.hpp"
37
38#define REMORA_LAPACK_DSYEV FORTRAN_ID(dsyev)
39
40extern "C"{
42 const char* jobz, const char* uplo, const int *n,
43 double* a, const int * lda, double* w,
44 double* work, const int * lwork, int* info
45);
46}
47
48
49
50namespace remora {namespace bindings {
51
52inline void syev(
53 int n, bool upper,
54 double* A, int lda,
55 double* eigenvalues
56){
57 if(n == 0) return;
58 int lwork = std::min<int>(130,4*n)*n;
59 double* work = new double[lwork];
60 int info;
61 char job = 'V';
62 char uplo = upper?'U':'L';
63 REMORA_LAPACK_DSYEV(&job, &uplo, &n, A, &lda,eigenvalues,work,&lwork,&info);
64 delete[] work;
65
66}
67
68
69template <typename MatA, typename VectorB>
70void syev(
71 matrix_expression<MatA, cpu_tag>& A,
72 vector_expression<VectorB, cpu_tag>& eigenValues
73) {
74 REMORA_SIZE_CHECK(A().size1() == A().size2());
75 REMORA_SIZE_CHECK(A().size1() == eigenValues().size());
76
77 std::size_t n = A().size1();
78 bool upper = false;
79 //lapack is column major storage.
80 if(std::is_same<typename MatA::orientation, row_major>::value){
81 upper = !upper;
82 }
83 auto storageA = A().raw_storage();
84 auto storageEig = eigenValues().raw_storage();
85 syev(
86 n, upper,
87 storageA.values,
88 storageA.leading_dimension,
89 storageEig.values
90 );
91
92 A() = trans(A);
93
94 //reverse eigenvectors and eigenvalues
95 for (int i = 0; i < (int)n-i-1; i++)
96 {
97 int l = n-i-1;
98 std::swap(eigenValues()( l ),eigenValues()( i ));
99 }
100 for (int j = 0; j < (int)n; j++) {
101 for (int i = 0; i < (int)n-i-1; i++)
102 {
103 int l = n-i-1;
104 std::swap(A()( j , l ), A()( j , i ));
105 }
106 }
107}
108
109}}
110
111#undef REMORA_LAPACK_DSYEV
112
113#endif