trsm.hpp
Go to the documentation of this file.
1/*!
2 *
3 *
4 * \brief -
5 *
6 * \author O. Krause
7 * \date 2016
8 *
9 *
10 * \par Copyright 1995-2015 Shark Development Team
11 *
12 * <BR><HR>
13 * This file is part of Shark.
14 * <http://image.diku.dk/shark/>
15 *
16 * Shark is free software: you can redistribute it and/or modify
17 * it under the terms of the GNU Lesser General Public License as published
18 * by the Free Software Foundation, either version 3 of the License, or
19 * (at your option) any later version.
20 *
21 * Shark is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU Lesser General Public License for more details.
25 *
26 * You should have received a copy of the GNU Lesser General Public License
27 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
28 *
29 */
30
31#ifndef REMORA_KERNELS_CLBLAS_TRSM_HPP
32#define REMORA_KERNELS_CLBLAS_TRSM_HPP
33
34#include "../../expression_types.hpp"
35#include "../../detail/traits.hpp"
36#include <boost/compute/functional/operator.hpp> //for multiplies
37///solves systems of triangular matrices
38
39namespace remora {namespace bindings {
40struct trsm_kernel{
41 boost::compute::kernel kernel;
42 std::size_t K_index;
43 std::size_t start_index;
44 std::size_t end_index;
45 std::size_t unit_index;
46 std::size_t upper_index;
47};
48//Lower triangular - matrix(row-major)
49template<class MatA, class MatB>
50trsm_kernel createTRSMDiagBlockKernel(
51 matrix_expression<MatA, gpu_tag> const& A_unreg,
52 matrix_expression<MatB, gpu_tag>& B_unreg,
53 char const* options
54){
55 typedef typename MatA::value_type value_typeA;
56 typedef typename MatB::value_type value_typeB;
57 boost::compute::multiplies<value_typeB> prod;
58
59 gpu::detail::meta_kernel k("blas_trsm");
60 std::size_t K_index = k.add_arg<std::size_t>("K");//number of columns in B
61 std::size_t start_index = k.add_arg<std::size_t>("start");//start of block of A
62 std::size_t end_index = k.add_arg<std::size_t>("end");//end of Block of A
63 std::size_t unit_index = k.add_arg<std::size_t>("unit");//whether A is unit triangular
64 std::size_t upper_index = k.add_arg<std::size_t>("upper");//whether A is upper triangular
65 auto A = k.register_args(to_functor(A_unreg));
66 auto B = k.register_args(to_functor(B_unreg));
67 // Local memory to fit a tile of A and B
68 // we store B as column major in local memory
69 // we also allocate memory to store results of B
70 k << "__local " <<k.decl<value_typeA>("Asub")<< "[TILE_SIZE][TILE_SIZE+2];\n";//+2 to avoid bank conflicts
71 k << "__local " <<k.decl<value_typeB>("Bsub")<< "[TILE_SIZE_K][TILE_SIZE+2];\n";//+2 to avoid bank conflicts
72 k << "const ulong numWorkers = get_local_size(0);\n";
73 //ensure we are not reading out of bounds
74 k << "const ulong t = get_group_id(1);\n";
75 k << "const ulong curTileA = end-start;\n";
76 k << "const ulong curTileK = min(TILE_SIZE_K, K - t*TILE_SIZE_K);\n";
77
78 // Load tile of A into local memory
79 k << "for(ulong i = get_local_id(0); i < TILE_SIZE; i += numWorkers){\n";
80 k << " for(ulong j = get_local_id(1); j < TILE_SIZE; j += numWorkers){\n";
81 k << " Asub[i][j] ="<< A(k.expr<cl_ulong>("min(end-1, start + i)"),k.expr<cl_ulong>("min(end-1, start + j)"))<<";\n";
82 k << " }\n";
83 k << "}\n";
84
85
86 // Load Tile of B into local memory, store columns of B as rows
87 k << "for(ulong i = get_local_id(0); i < TILE_SIZE; i += numWorkers){\n";
88 k << " for(ulong k = get_local_id(1); k < TILE_SIZE_K; k += numWorkers){\n";
89 k << " Bsub[k][i] ="<< B(k.expr<cl_ulong>("min(end-1,start + i)"),k.expr<cl_ulong>("min(K-1,t * TILE_SIZE_K+k)"))<<";\n";
90 k << " }\n";
91 k << "}\n";
92 // Synchronise to make sure the tiles are loaded
93 k << "barrier(CLK_LOCAL_MEM_FENCE);\n";
94
95 // Loop over the values of a single tile
96 //lower-case
97 k << "if(!upper){\n";
98 k << " for(ulong k = get_local_id(1); k < curTileK; k += numWorkers){\n";
99 k << " for(ulong i = 0; i < TILE_SIZE && get_local_id(0) == 0; ++i){\n";
100 k << " if(!unit){Bsub[k][i] /= Asub[i][i];}\n";
101 k << " for(ulong j = i+1; j < TILE_SIZE; ++j){\n";
102 k << " Bsub[k][j] -= "<< prod(k.expr<value_typeB>("Bsub[k][i]"), k.expr<value_typeA>("Asub[j][i]"))<<";\n";
103 k << " }\n";
104 k << " }\n";
105 k << " }\n";
106 k << "}else{\n";
107 //upper case
108 k << " for(ulong k = get_local_id(1); k < curTileK; k += numWorkers){\n";
109 k << " for(ulong n = curTileA; n > 0 && get_local_id(0) == 0; --n){\n";
110 k << " ulong i = n-1;\n";
111 k << " if(!unit ){Bsub[k][i] /= Asub[i][i];}\n";
112 k << " for(ulong j = 0; j < i; j ++){\n";
113 k << " Bsub[k][j] -= "<< prod(k.expr<value_typeB>("Bsub[k][i]"), k.expr<value_typeA>("Asub[j][i]"))<<";\n";
114 k << " }\n";
115 k << " }\n";
116 k << " }\n";
117 k << "}\n";
118 // Synchronise before continuing
119 k << "barrier(CLK_LOCAL_MEM_FENCE);\n";
120 // Store the final results back in B
121 k << "for(ulong i = get_local_id(0); i < curTileA; i += numWorkers){\n";
122 k << " for(ulong k = get_local_id(1); k < curTileK; k += numWorkers){\n";
123 k << B(k.expr<cl_ulong>("(start+i)"),k.expr<cl_ulong>("(t * TILE_SIZE_K+k)"))<<" = Bsub[k][i];\n";
124 k << " }\n";
125 k << "}\n";
126
127 boost::compute::kernel kernel = k.compile(B_unreg().queue().get_context(), options);
128 return {kernel,K_index,start_index,end_index,unit_index,upper_index};
129}
130
131template <typename MatA, typename MatB, class Triangular>
132void trsm_recursive(
133 matrix_expression<MatA, gpu_tag> const& Afull,
134 matrix_expression<MatB, gpu_tag> & Bfull,
135 trsm_kernel& kernel,
136 std::size_t start,
137 std::size_t end,
138 std::size_t tileSizeA,
139 std::size_t tileSizeB,
140 std::size_t numWorkers,
141 Triangular t
142){
143 auto A = subrange(Afull,start,end,start,end);
144 auto B = rows(Bfull,start,end);
145 std::size_t size = A.size1();
146 //if the matrix is small enough call the computation kernel directly for the block
147 if(size <= tileSizeA){
148 //enqueue kernel with kernel args
149 kernel.kernel.set_arg(kernel.K_index, Bfull().size2());
150 kernel.kernel.set_arg(kernel.start_index, start);
151 kernel.kernel.set_arg(kernel.end_index, end);
152 kernel.kernel.set_arg(kernel.unit_index, (std::size_t)Triangular::is_unit);
153 kernel.kernel.set_arg(kernel.upper_index, (std::size_t)Triangular::is_upper);
154
155 std::size_t global_work_size[2] = {
156 numWorkers,
157 (Bfull().size2()+tileSizeB-1)/ tileSizeB * numWorkers
158 };
159 std::size_t local_work_size[2] = {numWorkers, numWorkers};
160 Bfull().queue().enqueue_nd_range_kernel(kernel.kernel, 2,nullptr, global_work_size, local_work_size);
161 return;
162 }
163 std::size_t numBlocks = (A.size1()+tileSizeA-1)/tileSizeA;
164 std::size_t split = numBlocks/2 * tileSizeA;
165 auto Bfront = rows(B,0,split);
166 auto Bback = rows(B,split,size);
167
168 //otherwise run the kernel recursively
169 if(Triangular::is_upper){ //Upper triangular case
170 trsm_recursive(Afull, Bfull, kernel, start+split,end, tileSizeA,tileSizeB, numWorkers, t);
171 kernels::gemm(subrange(A,0,split,split,size), Bback, Bfront, -1.0);
172 trsm_recursive(Afull, Bfull, kernel, start,start+split, tileSizeA,tileSizeB, numWorkers, t);
173 }else{// Lower triangular caste
174 trsm_recursive(Afull, Bfull, kernel, start,start+split, tileSizeA,tileSizeB, numWorkers, t);
175 kernels::gemm(subrange(A,split,size,0,split), Bfront, Bback, -1.0);
176 trsm_recursive(Afull, Bfull, kernel, start+split,end, tileSizeA,tileSizeB, numWorkers, t);
177 }
178}
179
180template <typename MatA, typename MatB, class Triangular>
181void trsm_call(
182 matrix_expression<MatA, gpu_tag> const& A,
183 matrix_expression<MatB, gpu_tag>& B,
184 Triangular,
185 left
186){
187 REMORA_SIZE_CHECK(A().size1() == A().size2());
188 REMORA_SIZE_CHECK(A().size2() == B().size1());
189 std::size_t const TileSizeA = 32;//size of the diagonal blocks where the single kernel runs
190 std::size_t const TileSizeB = 32;// size of the blocks B is partitioned into along the number of columns
191 std::size_t const numWorkers = 8; //number of workers in two dimensions (e.g. 8x8=64)
192 char const* options ="-DTILE_SIZE=32ul -DTILE_SIZE_K=32ul";
193 auto kernel = bindings::createTRSMDiagBlockKernel(A,B,options);
194
195 trsm_recursive(A,B,kernel,0,A().size1(), TileSizeA, TileSizeB, numWorkers,Triangular());
196}
197
198template <typename MatA, typename MatB, class Triangular>
199void trsm_call(
200 matrix_expression<MatA, gpu_tag> const& A,
201 matrix_expression<MatB, gpu_tag>& B,
202 Triangular,
203 right
204){
205 auto transB = trans(B);
206 trsm_call(trans(A),transB,typename Triangular::transposed_orientation(),left());
207}
208
209}
210namespace kernels{
211//main kernel runs the kernel above recursively and calls gemv
212template <class Triangular, class Side, typename MatA, typename MatB>
213void trsm(
214 matrix_expression<MatA, gpu_tag> const& A,
215 matrix_expression<MatB, gpu_tag>& B
216){
217 bindings::trsm_call(A,B,Triangular(), Side());
218}
219}}
220#endif