matrix_fold.hpp
Go to the documentation of this file.
1/*!
2 * \brief kernels for folding matrices with openCL
3 *
4 * \author O. Krause
5 * \date 2016
6 *
7 *
8 * \par Copyright 1995-2015 Shark Development Team
9 *
10 * <BR><HR>
11 * This file is part of Shark.
12 * <http://image.diku.dk/shark/>
13 *
14 * Shark is free software: you can redistribute it and/or modify
15 * it under the terms of the GNU Lesser General Public License as published
16 * by the Free Software Foundation, either version 3 of the License, or
17 * (at your option) any later version.
18 *
19 * Shark is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Lesser General Public License for more details.
23 *
24 * You should have received a copy of the GNU Lesser General Public License
25 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
26 *
27 */
28#ifndef REMORA_KERNELS_CLBLAS_MATRIX_FOLD_HPP
29#define REMORA_KERNELS_CLBLAS_MATRIX_FOLD_HPP
30
31#include "../../expression_types.hpp"
32#include "../../detail/traits.hpp"
33#include <boost/compute/container/array.hpp>
34#include <boost/compute/algorithm/copy_n.hpp>
35namespace remora{namespace bindings{
36
37template<class F, class MatA, class Orientation>
38void matrix_fold(matrix_expression<MatA, gpu_tag> const& A_unreg, typename F::result_type& value, Orientation, dense_tag) {
39 auto& queue = A_unreg().queue();
40 typedef typename F::result_type value_type;
41 gpu::detail::meta_kernel k("blas_matrix_fold");
42 std::size_t size1_index = k.add_arg<std::size_t>("size1");
43 std::size_t size2_index = k.add_arg<std::size_t>("size2");
44 auto A = k.register_args(to_functor(A_unreg));
45 auto f = k.register_args(F());
46 boost::compute::array<value_type,1> device_result;
47 boost::compute::copy_n(&value, 1, device_result.begin(), queue);
48 device_result.front() = value;
49
50 //read all tiles in the assigned rows and apply f
51 k << "__local " <<k.decl<value_type>("subfold")<< "[TILE_DIM][TILE_DIM+1];";
52 k << "subfold[get_local_id(0)][get_local_id(1)] = "<<device_result.begin()[0]<<';';
53 k << "for(uint i = get_local_id(0) ; i < size1; i += TILE_DIM){";
54 k << " for(uint j = get_local_id(1) ; j < size2; j += TILE_DIM){";
55 auto exprSubFold = k.expr<value_type>("subfold[get_local_id(0)][get_local_id(1)]");
56 k<< exprSubFold << '=' << f(exprSubFold,A(k.expr<cl_uint>("i"),k.expr<cl_uint>("j")))<<";";
57 k<<"}}";
58 k << "barrier(CLK_LOCAL_MEM_FENCE);";//wait until all threads are done with copying
59 //sum up the rows
60 k << "if(get_local_id(0) == 0){";
61 k << " for(uint i = 1 ; i < TILE_DIM; ++i){";
62 k << " subfold[0][get_local_id(1)] ="
63 << f(
64 k.expr<value_type>("subfold[0][get_local_id(1)]"),
65 k.expr<value_type>("subfold[i][get_local_id(1)]")
66 )<<';';
67 k << " }";
68 k <<" if(get_local_id(1) == 0){";
69 k << " for(uint i = 1 ; i < TILE_DIM; ++i){";
70 k <<" subfold[0][0] =" << f(k.expr<value_type>("subfold[0][0]"),k.expr<value_type>("subfold[0][i]"))<<';';
71 k <<" }";
72 k <<device_result.begin()[0]<< "= subfold[0][0];";
73 k<< "}}";
74
75 //compile kernel
76 std::size_t TILE_DIM = 1;
77 char const* options ="-DTILE_DIM=1";
78 boost::compute::kernel kernel = k.compile(queue.get_context(), options);
79 //enqueue kernel
80 kernel.set_arg(size1_index, A_unreg().size1());
81 kernel.set_arg(size2_index, A_unreg().size2());
82
83 std::size_t global_work_size[2] = {TILE_DIM,TILE_DIM};
84 std::size_t local_work_size[2] = {TILE_DIM, TILE_DIM};
85 queue.enqueue_nd_range_kernel(kernel, 2,nullptr, global_work_size, local_work_size);
86 boost::compute::copy_n(device_result.begin(), 1, &value, queue);
87}
88}}
89#endif