Shark machine learning library
Installation
Tutorials
Benchmarks
Documentation
Quick references
Class list
Global functions
include
shark
ObjectiveFunctions
Benchmarks
ZDT1.h
Go to the documentation of this file.
1
//===========================================================================
2
/*!
3
*
4
*
5
* \brief Multi-objective optimization benchmark function ZDT1
6
*
7
* The function is described in
8
*
9
* Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of
10
* Multiobjective Evolutionary Algorithms: Empirical
11
* Results. Evolutionary Computation 8(2):173-195, 2000
12
*
13
*
14
*
15
* \author -
16
* \date -
17
*
18
*
19
* \par Copyright 1995-2017 Shark Development Team
20
*
21
* <BR><HR>
22
* This file is part of Shark.
23
* <https://shark-ml.github.io/Shark/>
24
*
25
* Shark is free software: you can redistribute it and/or modify
26
* it under the terms of the GNU Lesser General Public License as published
27
* by the Free Software Foundation, either version 3 of the License, or
28
* (at your option) any later version.
29
*
30
* Shark is distributed in the hope that it will be useful,
31
* but WITHOUT ANY WARRANTY; without even the implied warranty of
32
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33
* GNU Lesser General Public License for more details.
34
*
35
* You should have received a copy of the GNU Lesser General Public License
36
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
37
*
38
*/
39
//===========================================================================
40
41
42
#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_ZDT1_H
43
#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_ZDT1_H
44
45
#include <
shark/ObjectiveFunctions/AbstractObjectiveFunction.h
>
46
#include <
shark/ObjectiveFunctions/BoxConstraintHandler.h
>
47
48
namespace
shark
{
namespace
benchmarks{
49
/*! \brief Multi-objective optimization benchmark function ZDT1
50
*
51
* The function is described in
52
*
53
* Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of
54
* Multiobjective Evolutionary Algorithms: Empirical
55
* Results. Evolutionary Computation 8(2):173-195, 2000
56
* \ingroup benchmarks
57
*/
58
struct
ZDT1
:
public
MultiObjectiveFunction
59
{
60
61
ZDT1
(std::size_t numVariables = 0) : m_handler(numVariables,0,1) {
62
announceConstraintHandler
(&m_handler);
63
}
64
65
/// \brief From INameable: return the class name.
66
std::string
name
()
const
67
{
return
"ZDT1"
; }
68
69
std::size_t
numberOfObjectives
()
const
{
70
return
2;
71
}
72
73
std::size_t
numberOfVariables
()
const
{
74
return
m_handler.
dimensions
();
75
}
76
77
bool
hasScalableDimensionality
()
const
{
78
return
true
;
79
}
80
81
/// \brief Adjusts the number of variables if the function is scalable.
82
/// \param [in] numberOfVariables The new dimension.
83
void
setNumberOfVariables
( std::size_t
numberOfVariables
){
84
m_handler.
setBounds
(
numberOfVariables
,0,1);
85
}
86
87
ResultType
eval
(
const
SearchPointType
& x )
const
{
88
m_evaluationCounter
++;
89
90
ResultType
value( 2 );
91
92
value[0] = x( 0 );
93
94
double
g = 1.0 + 9.0 *(sum(x)-x(0))/(
numberOfVariables
() - 1.0);
95
double
h = 1.0 - std::sqrt(x( 0 ) / g);
96
97
value[1] = g * h;
98
99
return
value;
100
}
101
102
private
:
103
BoxConstraintHandler<SearchPointType>
m_handler;
104
};
105
106
}}
107
#endif