TrainingError.h
Go to the documentation of this file.
1/*!
2 *
3 *
4 * \brief Stopping Criterion which stops, when the trainign error seems to converge
5 *
6 *
7 *
8 * \author O. Krause
9 * \date 2010
10 *
11 *
12 * \par Copyright 1995-2017 Shark Development Team
13 *
14 * <BR><HR>
15 * This file is part of Shark.
16 * <https://shark-ml.github.io/Shark/>
17 *
18 * Shark is free software: you can redistribute it and/or modify
19 * it under the terms of the GNU Lesser General Public License as published
20 * by the Free Software Foundation, either version 3 of the License, or
21 * (at your option) any later version.
22 *
23 * Shark is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU Lesser General Public License for more details.
27 *
28 * You should have received a copy of the GNU Lesser General Public License
29 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
30 *
31 */
32
33#ifndef SHARK_TRAINERS_STOPPINGCRITERA_TRAININGERROR_H
34#define SHARK_TRAINERS_STOPPINGCRITERA_TRAININGERROR_H
35
38#include <queue>
39#include <numeric>
40#include <shark/LinAlg/Base.h>
41namespace shark{
42
43/// \brief This stopping criterion tracks the improvement of the error function of the training error over an interval of iterations.
44///
45/// If at one point, the difference between the error values of the beginning and the end of the interval are smaller
46/// than a certain value, this stopping criterion assumes convergence and stops.
47/// Of course, this may be misleading, when the algorithm temporarily gets stuck at a saddle point of the error surface.
48/// The functions assumes that the algorithm is minimizing. For details, see:
49///
50/// Lutz Prechelt. Early Stopping - but when? In Genevieve B. Orr and
51/// Klaus-Robert Müller: Neural Networks: Tricks of the Trade, volume
52/// 1524 of LNCS, Springer, 1997.
53///
54template<class PointType = RealVector>
55class TrainingError: public AbstractStoppingCriterion< SingleObjectiveResultSet<PointType> >{
56public:
57 /// constructs the TrainingError generalization loss
58 /// @param intervalSize size of the interval over which the progress is monitored
59 /// @param minDifference minimum difference between start and end of the interval allowed before training stops
60 TrainingError(size_t intervalSize, double minDifference){
61 m_minDifference = minDifference;
62 m_intervalSize = intervalSize;
63 reset();
64 }
65 /// returns true if training should stop
67
68 m_interval.pop();
69 m_interval.push(set.value);
70 return (m_interval.front()-set.value) >= 0
71 && (m_interval.front()-set.value) < m_minDifference;
72 }
73 /// resets the internal state
74 void reset(){
75 m_interval = std::queue<double>();
76 for(size_t i = 0; i != m_intervalSize;++i) {
77 m_interval.push(std::numeric_limits<double>::max());
78 }
79 }
80protected:
81 /// monitored training interval
82 std::queue<double> m_interval;
83 /// minmum difference allowed
85 /// size of the interval
87};
88}
89
90
91#endif