Shark machine learning library
Installation
Tutorials
Benchmarks
Documentation
Quick references
Class list
Global functions
include
shark
ObjectiveFunctions
Benchmarks
Schwefel.h
Go to the documentation of this file.
1
/*!
2
*
3
*
4
* \brief Convex benchmark function.
5
*
6
*
7
* \author T. Voss
8
* \date 2010-2011
9
*
10
*
11
* \par Copyright 1995-2017 Shark Development Team
12
*
13
* <BR><HR>
14
* This file is part of Shark.
15
* <https://shark-ml.github.io/Shark/>
16
*
17
* Shark is free software: you can redistribute it and/or modify
18
* it under the terms of the GNU Lesser General Public License as published
19
* by the Free Software Foundation, either version 3 of the License, or
20
* (at your option) any later version.
21
*
22
* Shark is distributed in the hope that it will be useful,
23
* but WITHOUT ANY WARRANTY; without even the implied warranty of
24
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25
* GNU Lesser General Public License for more details.
26
*
27
* You should have received a copy of the GNU Lesser General Public License
28
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
29
*
30
*/
31
#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_SCHWEFEL_H
32
#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_SCHWEFEL_H
33
34
#include <
shark/ObjectiveFunctions/AbstractObjectiveFunction.h
>
35
#include <
shark/Core/Random.h
>
36
37
namespace
shark
{
namespace
benchmarks{
38
/**
39
* \brief Convex benchmark function.
40
* \ingroup benchmarks
41
*/
42
struct
Schwefel
:
public
SingleObjectiveFunction
{
43
44
Schwefel
(std::size_t
numberOfVariables
= 5):m_numberOfVariables(
numberOfVariables
) {
45
m_features
|=
CAN_PROPOSE_STARTING_POINT
;
46
}
47
48
/// \brief From INameable: return the class name.
49
std::string
name
()
const
50
{
return
"Schwefel"
; }
51
52
std::size_t
numberOfVariables
()
const
{
53
return
m_numberOfVariables;
54
}
55
56
bool
hasScalableDimensionality
()
const
{
57
return
true
;
58
}
59
60
void
setNumberOfVariables
( std::size_t
numberOfVariables
){
61
m_numberOfVariables =
numberOfVariables
;
62
}
63
64
SearchPointType
proposeStartingPoint
()
const
{
65
RealVector x(
numberOfVariables
());
66
67
for
(std::size_t i = 0; i < x.size(); i++) {
68
x(i) =
random::gauss
(*
mep_rng
, 0,1);
69
}
70
return
x;
71
}
72
73
double
eval
(
const
SearchPointType
&p)
const
{
74
m_evaluationCounter
++;
75
double
value = 0;
76
double
sum= 0;
77
for
(std::size_t i = 0; i != m_numberOfVariables; ++i){
78
sum+= p(i);
79
value+=
sqr
(sum);
80
}
81
return
value;
82
}
83
private
:
84
std::size_t m_numberOfVariables;
85
};
86
87
}}
88
89
#endif