Shark machine learning library
Installation
Tutorials
Benchmarks
Documentation
Quick references
Class list
Global functions
include
shark
Algorithms
Trainers
Budgeted
RemoveBudgetMaintenanceStrategy.h
Go to the documentation of this file.
1
//===========================================================================
2
/*!
3
*
4
*
5
* \brief Remove budget maintenance strategy.
6
*
7
* \par
8
* This is an budget strategy that simply removes one of the
9
* budget vectors. Depending on the flavor, this can be e.g.
10
* a random one, the smallest one (w.r.t. to 2-norm of the alphas)
11
*
12
*
13
*
14
*
15
* \author Aydin Demircioglu
16
* \date 2014
17
*
18
*
19
* \par Copyright 1995-2017 Shark Development Team
20
*
21
* <BR><HR>
22
* This file is part of Shark.
23
* <https://shark-ml.github.io/Shark/>
24
*
25
* Shark is free software: you can redistribute it and/or modify
26
* it under the terms of the GNU Lesser General Public License as published
27
* by the Free Software Foundation, either version 3 of the License, or
28
* (at your option) any later version.
29
*
30
* Shark is distributed in the hope that it will be useful,
31
* but WITHOUT ANY WARRANTY; without even the implied warranty of
32
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33
* GNU Lesser General Public License for more details.
34
*
35
* You should have received a copy of the GNU Lesser General Public License
36
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
37
*
38
*/
39
//===========================================================================
40
41
42
#ifndef SHARK_MODELS_REMOVEBUDGETMAINTENANCESTRATEGY_H
43
#define SHARK_MODELS_REMOVEBUDGETMAINTENANCESTRATEGY_H
44
45
#include <
shark/Models/Kernels/AbstractKernelFunction.h
>
46
#include <
shark/Data/Dataset.h
>
47
#include <
shark/Data/DataView.h
>
48
49
#include <
shark/Algorithms/Trainers/Budgeted/AbstractBudgetMaintenanceStrategy.h
>
50
51
52
namespace
shark
53
{
54
55
///
56
/// \brief Budget maintenance strategy that removes a vector
57
///
58
/// This is an budget strategy that simply removes one of the
59
/// budget vectors. Depending on the flavor, this can be e.g.
60
/// a random one, the smallest one (w.r.t. to 2-norm of the alphas)
61
///
62
template
<
class
InputType>
63
class
RemoveBudgetMaintenanceStrategy
:
public
AbstractBudgetMaintenanceStrategy
<InputType>
64
{
65
typedef
KernelExpansion<InputType>
ModelType
;
66
typedef
LabeledData<InputType, unsigned int>
DataType
;
67
typedef
typename
DataType::element_type ElementType;
68
69
public
:
70
71
/// the flavors of the remove strategy
72
enum
RemoveStrategyFlavor
{
RANDOM
= 0,
SMALLEST
= 1};
73
74
75
/// constructor.
76
/// @param[in] flavor enum that decides on the method a vector is removed.
77
RemoveBudgetMaintenanceStrategy
(
RemoveStrategyFlavor
flavor =
SMALLEST
)
78
:
m_flavor
(flavor)
79
{
80
SHARK_RUNTIME_CHECK
(flavor < 2,
"Invalid flavor"
);
81
}
82
83
84
/// add a vector to the model.
85
/// this will add the given vector to the model and remove another one depending on the flavor.
86
///
87
/// @param[in,out] model the model the strategy will work with
88
/// @param[in] alpha alphas for the new budget vector
89
/// @param[in] supportVector the vector to add to the model by applying the maintenance strategy
90
///
91
virtual
void
addToModel
(
ModelType
& model,
InputType
const
& alpha, ElementType
const
& supportVector)
92
{
93
94
// first we check: if the budget is not full, we do not need to do remove anything
95
std::size_t index = 0;
96
double
minAlpha = 0;
97
this->
findSmallestVector
(model, index, minAlpha);
98
99
if
(minAlpha == 0.0f)
100
{
101
// replace vector and alpha
102
model.
basis
().
element
(index) = supportVector.input;
103
row(model.
alpha
(), index) = alpha;
104
return
;
105
}
106
107
// else depending on the flavor we do something
108
switch
(
m_flavor
)
109
{
110
case
RANDOM
:
111
{
112
// though we have found the smallest one, we want to remove
113
// a random element.
114
index =
random::discrete
(0, model.
basis
().
numberOfElements
() - 1);
115
break
;
116
}
117
case
SMALLEST
:
118
{
119
// we already have found the smallest alpha, so nothing to do
120
break
;
121
}
122
}
123
124
// replace vector and alpha
125
model.
basis
().
element
(index) = supportVector.input;
126
row(model.
alpha
(), index) = alpha;
127
128
// we need to clear out the last vector, as it is just a buffer
129
row (model.
alpha
(), model.
basis
().
numberOfElements
() -1).clear();
130
}
131
132
133
/// class name
134
std::string
name
()
const
135
{
return
"RemoveBudgetMaintenanceStrategy"
; }
136
137
protected
:
138
/// flavor for removing a vector
139
size_t
m_flavor
;
140
};
141
142
}
143
#endif