PrecomputedMatrix.h
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief Precomputed version of a matrix for quadratic programming
6 *
7 *
8 * \par
9 *
10 *
11 *
12 * \author T. Glasmachers
13 * \date 2007-2012
14 *
15 *
16 * \par Copyright 1995-2017 Shark Development Team
17 *
18 * <BR><HR>
19 * This file is part of Shark.
20 * <https://shark-ml.github.io/Shark/>
21 *
22 * Shark is free software: you can redistribute it and/or modify
23 * it under the terms of the GNU Lesser General Public License as published
24 * by the Free Software Foundation, either version 3 of the License, or
25 * (at your option) any later version.
26 *
27 * Shark is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public License
33 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
34 *
35 */
36//===========================================================================
37
38
39#ifndef SHARK_LINALG_PRECOMPUTEDMATRIX_H
40#define SHARK_LINALG_PRECOMPUTEDMATRIX_H
41
42#include <shark/Data/Dataset.h>
43#include <shark/LinAlg/Base.h>
44
45#include <vector>
46#include <cmath>
47
48
49namespace shark {
50
51///
52/// \brief Precomputed version of a matrix for quadratic programming
53///
54/// \par
55/// The PrecomputedMatrix class computes all pairs of kernel
56/// evaluations in its constructor and stores them im memory.
57/// This proceeding is only viable if the number of examples
58/// does not exceed, say, about 10000. In this case the memory
59/// demand is already \f$ 4 \cdot 10000^2 \approx 400\text{MB} \f$,
60/// growing quadratically.
61///
62/// \par
63/// Use of this class may be beneficial for certain model
64/// selection strategies, in particular if the kernel is
65/// fixed and the regularization parameter is varied.
66///
67/// \par
68/// Use of this class may, in certain situations, even mean a
69/// loss is speed, compared to CachedMatrix. This is the case
70/// in particular if the solution of the quadratic program is
71/// sparse, in which case most entries of the matrix do not
72/// need to be computed at all, and the problem is "simple"
73/// enough such that the solver's shrinking heuristic is not
74/// mislead.
75///
76template <class Matrix>
78{
79public:
80 typedef typename Matrix::QpFloatType QpFloatType;
81
82 /// Constructor
83 /// \param base matrix to be precomputed
84 PrecomputedMatrix(Matrix* base)
85 : matrix(base->size(), base->size())
86 {
87 base->matrix(matrix);
88 }
89
90 /// \brief Computes the i-th row of the kernel matrix.
91 ///
92 ///The entries start,...,end of the i-th row are computed and stored in storage.
93 ///There must be enough room for this operation preallocated.
94 void row(std::size_t k, std::size_t start,std::size_t end, QpFloatType* storage) const{
95 for(std::size_t j = start; j < end; j++){
96 storage[j-start] = matrix(k, j);
97 }
98 }
99
100
101 /// \brief Return a subset of a matrix row
102 ///
103 /// \par
104 /// This method returns an array with at least
105 /// the entries in the interval [begin, end[ filled in.
106 ///
107 /// \param k matrix row
108 /// \param begin first column to be filled in
109 /// \param end last column to be filled in +1
110 QpFloatType* row(std::size_t k, std::size_t begin, std::size_t end)
111 {
112 return &matrix(k, begin);
113 }
114
115 /// return a single matrix entry
116 QpFloatType operator () (std::size_t i, std::size_t j) const
117 { return entry(i, j); }
118
119 /// return a single matrix entry
120 QpFloatType entry(std::size_t i, std::size_t j) const
121 {
122 return matrix(i, j);
123 }
124
125 /// swap two variables
126 void flipColumnsAndRows(std::size_t i, std::size_t j)
127 {
128 matrix.swap_rows(i, j);
129 matrix.swap_columns(i, j);
130 }
131
132 /// return the size of the quadratic matrix
133 std::size_t size() const
134 { return matrix.size2(); }
135
136 /// for compatibility with CachedMatrix
137 std::size_t getMaxCacheSize()
138 { return matrix.size1() * matrix.size2(); }
139
140 /// for compatibility with CachedMatrix
141 std::size_t getCacheSize() const
142 { return getMaxCacheSize(); }
143
144 /// for compatibility with CachedMatrix
145 std::size_t getCacheRowSize(std::size_t k) const
146 { return matrix.size2(); }
147
148 /// for compatibility with CachedMatrix
149 bool isCached(std::size_t){
150 return true;
151 }
152 /// for compatibility with CachedMatrix
153 void setMaxCachedIndex(std::size_t n){}
154
155 /// for compatibility with CachedMatrix
156 void clear()
157 { }
158
159protected:
160 /// container for precomputed values
161 blas::matrix<QpFloatType> matrix;
162};
163
164}
165#endif