Math.h
Go to the documentation of this file.
1/*!
2 *
3 *
4 * \brief Very basic math abstraction layer.
5 *
6 * \par
7 * This file serves as a minimal abstraction layer.
8 * Inclusion of this file makes some frequently used
9 * functions, constants, and header file inclusions
10 * OS-, compiler-, and version-independent.
11 *
12 *
13 *
14 *
15 * \author -
16 * \date -
17 *
18 *
19 * \par Copyright 1995-2017 Shark Development Team
20 *
21 * <BR><HR>
22 * This file is part of Shark.
23 * <https://shark-ml.github.io/Shark/>
24 *
25 * Shark is free software: you can redistribute it and/or modify
26 * it under the terms of the GNU Lesser General Public License as published
27 * by the Free Software Foundation, either version 3 of the License, or
28 * (at your option) any later version.
29 *
30 * Shark is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 * GNU Lesser General Public License for more details.
34 *
35 * You should have received a copy of the GNU Lesser General Public License
36 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
37 *
38 */
39#ifndef SHARK_CORE_MATH_H
40#define SHARK_CORE_MATH_H
41
42#include <boost/math/constants/constants.hpp>
43#include <boost/math/special_functions/sign.hpp>
44#include <boost/utility/enable_if.hpp>
45#include <limits>
46#include <cmath>
47#include <type_traits>
49
50namespace shark {
51
52 // define doxygen group for shark global functions, var, etc. (should only appear once in all shark files)
53 /**
54 * \defgroup shark_globals shark_globals
55 *
56 * \brief Several mathematical, linear-algebra, or other functions within Shark are not part of any particular class. They are collected here in the doxygen group "shark_globals"
57 *
58 * @{
59 *
60 */
61
62 /**
63 * \brief Constant for sqrt( 2 * pi ).
64 */
65 static const double SQRT_2_PI = boost::math::constants::root_two_pi<double>();
66// static const double SQRT_PI = boost::math::constants::root_pi<double>();
67
68 /// Maximum allowed input value for exp.
69 template<class T>
71 return boost::math::constants::ln_two<T>()*std::numeric_limits<T>::max_exponent;
72 }
73 /// Minimum value for exp(x) allowed so that it is not 0.
74 template<class T>
76 return boost::math::constants::ln_two<T>()*std::numeric_limits<T>::min_exponent;
77 }
78
79 /// Calculates x^2.
80 template <class T>
81 inline typename boost::enable_if<std::is_arithmetic<T>, T>::type sqr( const T & x) {
82 return x * x;
83 }
84
85 /// Calculates x^3.
86 template <class T> inline T cube( const T & x) {
87 return x * x * x;
88 }
89
90 ///\brief Logistic function/logistic function.
91 ///
92 ///Calculates the sigmoid function 1/(1+exp(-x)). The type must be arithmetic. For example
93 ///float,double,long double, int,... but no custom Type.
94 template<class T>
95 typename boost::enable_if<std::is_arithmetic<T>, T>::type sigmoid(T x){
96 if(x < minExpInput<T>()) {
97 return 1;
98 }
99 if(x > maxExpInput<T>()) {
100 return 0;
101 }
102 return 1. / (1.+ std::exp(-x));
103 }
104
105 ///\brief Thresholded exp function, over- and underflow safe.
106 ///
107 ///Replaces the value of exp(x) for numerical reasons by the a threshold value if it gets too large.
108 ///Use it only, if there is no other way to get the function stable!
109 ///
110 ///@param x the exponent
111 template<class T>
112 T safeExp(T x ){
113 if(x > maxExpInput<T>()){
114 //std::cout<<"warning, x too high"<<std::endl;
115 return 0.9 * std::numeric_limits<long double>::max();
116 }
117 //Allow Koenig Lookup
118 using std::exp;
119 return exp(x);
120 }
121 ///\brief Thresholded log function, over- and underflow safe.
122 ///
123 ///Replaces the value of log(x) for numerical reasons by the a threshold value if it gets too low.
124 ///Use it only, if there is no other way to get the function stable!
125 ///@param x the exponent
126 template<class T>
127 T safeLog(T x)
128 {
129
130 if(x> -std::numeric_limits<T>::epsilon() && x < std::numeric_limits<T>::epsilon()){
131 //std::cout<<"warning, x too low"<<std::endl;
132 return boost::math::sign(x)*std::numeric_limits<T>::min_exponent;
133 }
134
135 //Allow Koenig Lookup
136 using std::log;
137 return log(x);
138 };
139
140 ///\brief Numerically stable version of the function log(1+exp(x)).
141 ///
142 ///Numerically stable version of the function log(1+exp(x)).
143 ///This function is the integral of the famous sigmoid function.
144 ///The type must be arithmetic. For example
145 ///float,double,long double, int,... but no custom Type.
146 template<class T>
147 typename boost::enable_if<std::is_arithmetic<T>, T>::type softPlus(T x){
148 if(x > maxExpInput<T>()){
149 return x;
150 }
151 if(x < minExpInput<T>()){
152 return 0;
153 }
154 return std::log(1+std::exp(x));
155 }
156
157 ///\brief Numerically stable version of the function log(1+exp(x)). calculated with float precision to save some time
158 ///
159 ///Numerically stable version of the function log(1+exp(x)).
160 ///This function is the integral of the famous sigmoid function.
161 inline double softPlus(double x){
162 if(x > 15){
163 return x;
164 }
165 if(x < -17){
166 return 0;
167 }
168 return std::log(1.0f+std::exp(float(x)));
169 }
170
171 ///brief lets x have the same sign as y.
172 ///
173 ///This is the famous well known copysign function from fortran.
174 template<class T>
175 T copySign(T x, T y){
176 using std::abs;
177 if(y > 0){
178 return abs(x);
179 }
180 return -abs(x);
181 }
182}
183
184#endif