IHR3.h
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief Multi-objective optimization benchmark function IHR 3.
6 *
7 * The function is described in
8 *
9 * Christian Igel, Nikolaus Hansen, and Stefan Roth.
10 * Covariance Matrix Adaptation for Multi-objective Optimization.
11 * Evolutionary Computation 15(1), pp. 1-28, 2007
12 *
13 *
14 *
15 * \author -
16 * \date -
17 *
18 *
19 * \par Copyright 1995-2017 Shark Development Team
20 *
21 * <BR><HR>
22 * This file is part of Shark.
23 * <https://shark-ml.github.io/Shark/>
24 *
25 * Shark is free software: you can redistribute it and/or modify
26 * it under the terms of the GNU Lesser General Public License as published
27 * by the Free Software Foundation, either version 3 of the License, or
28 * (at your option) any later version.
29 *
30 * Shark is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 * GNU Lesser General Public License for more details.
34 *
35 * You should have received a copy of the GNU Lesser General Public License
36 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
37 *
38 */
39//===========================================================================
40#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_IHR3_H
41#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_IHR3_H
42
45
47
48namespace shark{namespace benchmarks{
49/*! \brief Multi-objective optimization benchmark function IHR3.
50*
51* The function is described in
52*
53* Christian Igel, Nikolaus Hansen, and Stefan Roth.
54* Covariance Matrix Adaptation for Multi-objective Optimization.
55* Evolutionary Computation 15(1), pp. 1-28, 2007
56* \ingroup benchmarks
57*/
59 IHR3(std::size_t numVariables = 0)
60 : m_handler(numVariables,-1,1){
61 announceConstraintHandler(&m_handler);
62 }
63
64 /// \brief From INameable: return the class name.
65 std::string name() const
66 { return "IHR3"; }
67
68 std::size_t numberOfObjectives()const{
69 return 2;
70 }
71
72 std::size_t numberOfVariables()const{
73 return m_handler.dimensions();
74 }
75
77 return true;
78 }
79
86
87 void init() {
89 m_ymax = 1.0/norm_inf(row(m_rotationMatrix,0));
90 }
91
92 ResultType eval( const SearchPointType & x )const {
94
95 ResultType value( 2 );
96
97 SearchPointType y = prod(m_rotationMatrix,x);
98
99 value[0] = std::abs( y( 0 ) );
100
101 double g = 0;
102 for (unsigned i = 1; i < numberOfVariables(); i++)
103 g += hg( y( i ) );
104 g = 1 + 9 * g / (numberOfVariables() - 1.);
105 double quotient = h(y( 0 )) / g;
106 value[1] = g * hf(1. - std::sqrt(quotient) - quotient * std::sin(10 * M_PI * y( 0 ) ), y( 0 ));
107
108 return value;
109 }
110
111 double h( double x )const {
112 return 1 / ( 1 + std::exp( -x / std::sqrt( double(numberOfVariables()) ) ) );
113 }
114
115 double hf(double x, double y0)const {
116 if( std::abs(y0) <= m_ymax )
117 return x;
118 return std::abs( y0 ) + 1.;
119 }
120
121 double hg(double x)const {
122 return sqr(x) / ( std::abs(x) + 0.1 );
123 }
124private:
125 double m_ymax;
127 RealMatrix m_rotationMatrix;
128};
129
130}}
131#endif