IHR2.h
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief Multi-objective optimization benchmark function IHR 2.
6 *
7 * The function is described in
8 *
9 * Christian Igel, Nikolaus Hansen, and Stefan Roth.
10 * Covariance Matrix Adaptation for Multi-objective Optimization.
11 * Evolutionary Computation 15(1), pp. 1-28, 2007
12 *
13 *
14 *
15 * \author -
16 * \date -
17 *
18 *
19 * \par Copyright 1995-2017 Shark Development Team
20 *
21 * <BR><HR>
22 * This file is part of Shark.
23 * <https://shark-ml.github.io/Shark/>
24 *
25 * Shark is free software: you can redistribute it and/or modify
26 * it under the terms of the GNU Lesser General Public License as published
27 * by the Free Software Foundation, either version 3 of the License, or
28 * (at your option) any later version.
29 *
30 * Shark is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 * GNU Lesser General Public License for more details.
34 *
35 * You should have received a copy of the GNU Lesser General Public License
36 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
37 *
38 */
39//===========================================================================
40#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_IHR2_H
41#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_IHR2_H
42
45
47
48namespace shark{namespace benchmarks{
49/*! \brief Multi-objective optimization benchmark function IHR 2.
50*
51* The function is described in
52*
53* Christian Igel, Nikolaus Hansen, and Stefan Roth.
54* Covariance Matrix Adaptation for Multi-objective Optimization.
55* Evolutionary Computation 15(1), pp. 1-28, 2007
56* \ingroup benchmarks
57*/
59{
60 IHR2(std::size_t numVariables = 0)
61 : m_handler(numVariables,-1, 1 ){
62 announceConstraintHandler(&m_handler);
63 }
64
65 /// \brief From INameable: return the class name.
66 std::string name() const
67 { return "IHR2"; }
68
69 std::size_t numberOfObjectives()const{
70 return 2;
71 }
72
73 std::size_t numberOfVariables()const{
74 return m_handler.dimensions();
75 }
76
78 return true;
79 }
80
87
88 void init() {
90 m_ymax = 1.0/norm_inf(row(m_rotationMatrix,0));
91 }
92
93 ResultType eval( const SearchPointType & x )const {
95
96 ResultType value( 2 );
97
98 SearchPointType y = prod(m_rotationMatrix,x);
99
100 value[0] = std::abs( y( 0 ) );
101
102 double g = 0;
103 for (unsigned i = 1; i < numberOfVariables(); i++)
104 g += hg( y( i ) );
105 g = 1 + 9 * g / (numberOfVariables() - 1.);
106
107
108 value[1] = g * hf(1. - sqr(y( 0 ) / g), y( 0 ));
109
110 return value;
111 }
112
113 double hf(double x, double y0)const {
114 if( std::abs(y0) <= m_ymax )
115 return x;
116 return std::abs( y0 ) + 1.;
117 }
118
119 double hg(double x)const {
120 return sqr(x) / ( std::abs(x) + 0.1 );
121 }
122private:
123 double m_ymax;
125 RealMatrix m_rotationMatrix;
126};
127
128}}
129#endif