Shark machine learning library
Installation
Tutorials
Benchmarks
Documentation
Quick references
Class list
Global functions
include
shark
ObjectiveFunctions
Benchmarks
IHR2.h
Go to the documentation of this file.
1
//===========================================================================
2
/*!
3
*
4
*
5
* \brief Multi-objective optimization benchmark function IHR 2.
6
*
7
* The function is described in
8
*
9
* Christian Igel, Nikolaus Hansen, and Stefan Roth.
10
* Covariance Matrix Adaptation for Multi-objective Optimization.
11
* Evolutionary Computation 15(1), pp. 1-28, 2007
12
*
13
*
14
*
15
* \author -
16
* \date -
17
*
18
*
19
* \par Copyright 1995-2017 Shark Development Team
20
*
21
* <BR><HR>
22
* This file is part of Shark.
23
* <https://shark-ml.github.io/Shark/>
24
*
25
* Shark is free software: you can redistribute it and/or modify
26
* it under the terms of the GNU Lesser General Public License as published
27
* by the Free Software Foundation, either version 3 of the License, or
28
* (at your option) any later version.
29
*
30
* Shark is distributed in the hope that it will be useful,
31
* but WITHOUT ANY WARRANTY; without even the implied warranty of
32
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33
* GNU Lesser General Public License for more details.
34
*
35
* You should have received a copy of the GNU Lesser General Public License
36
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
37
*
38
*/
39
//===========================================================================
40
#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_IHR2_H
41
#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_IHR2_H
42
43
#include <
shark/ObjectiveFunctions/AbstractObjectiveFunction.h
>
44
#include <
shark/ObjectiveFunctions/BoxConstraintHandler.h
>
45
46
#include <
shark/LinAlg/rotations.h
>
47
48
namespace
shark
{
namespace
benchmarks{
49
/*! \brief Multi-objective optimization benchmark function IHR 2.
50
*
51
* The function is described in
52
*
53
* Christian Igel, Nikolaus Hansen, and Stefan Roth.
54
* Covariance Matrix Adaptation for Multi-objective Optimization.
55
* Evolutionary Computation 15(1), pp. 1-28, 2007
56
* \ingroup benchmarks
57
*/
58
struct
IHR2
:
public
MultiObjectiveFunction
59
{
60
IHR2
(std::size_t numVariables = 0)
61
: m_handler(numVariables,-1, 1 ){
62
announceConstraintHandler
(&m_handler);
63
}
64
65
/// \brief From INameable: return the class name.
66
std::string
name
()
const
67
{
return
"IHR2"
; }
68
69
std::size_t
numberOfObjectives
()
const
{
70
return
2;
71
}
72
73
std::size_t
numberOfVariables
()
const
{
74
return
m_handler.
dimensions
();
75
}
76
77
bool
hasScalableDimensionality
()
const
{
78
return
true
;
79
}
80
81
void
setNumberOfVariables
( std::size_t
numberOfVariables
){
82
m_handler.
setBounds
(
83
SearchPointType
(
numberOfVariables
,-1),
84
SearchPointType
(
numberOfVariables
,1)
85
);
86
}
87
88
void
init
() {
89
m_rotationMatrix =
blas::randomRotationMatrix
(*
mep_rng
,
numberOfVariables
());
90
m_ymax = 1.0/norm_inf(row(m_rotationMatrix,0));
91
}
92
93
ResultType
eval
(
const
SearchPointType
& x )
const
{
94
m_evaluationCounter
++;
95
96
ResultType
value( 2 );
97
98
SearchPointType
y = prod(m_rotationMatrix,x);
99
100
value[0] = std::abs( y( 0 ) );
101
102
double
g = 0;
103
for
(
unsigned
i = 1; i <
numberOfVariables
(); i++)
104
g +=
hg
( y( i ) );
105
g = 1 + 9 * g / (
numberOfVariables
() - 1.);
106
107
108
value[1] = g *
hf
(1. -
sqr
(y( 0 ) / g), y( 0 ));
109
110
return
value;
111
}
112
113
double
hf
(
double
x,
double
y0)
const
{
114
if
( std::abs(y0) <= m_ymax )
115
return
x;
116
return
std::abs( y0 ) + 1.;
117
}
118
119
double
hg
(
double
x)
const
{
120
return
sqr
(x) / ( std::abs(x) + 0.1 );
121
}
122
private
:
123
double
m_ymax;
124
BoxConstraintHandler<SearchPointType>
m_handler;
125
RealMatrix m_rotationMatrix;
126
};
127
128
}}
129
#endif