HypervolumeContribution2D.h
Go to the documentation of this file.
1/*!
2 *
3 * \author O.Krause, T. Glasmachers
4 * \date 2014-2016
5 *
6 *
7 * \par Copyright 1995-2017 Shark Development Team
8 *
9 * <BR><HR>
10 * This file is part of Shark.
11 * <https://shark-ml.github.io/Shark/>
12 *
13 * Shark is free software: you can redistribute it and/or modify
14 * it under the terms of the GNU Lesser General Public License as published
15 * by the Free Software Foundation, either version 3 of the License, or
16 * (at your option) any later version.
17 *
18 * Shark is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU Lesser General Public License for more details.
22 *
23 * You should have received a copy of the GNU Lesser General Public License
24 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
25 *
26 */
27#ifndef SHARK_ALGORITHMS_DIRECTSEARCH_HYPERVOLUME_CONTRIBUTION_2D_H
28#define SHARK_ALGORITHMS_DIRECTSEARCH_HYPERVOLUME_CONTRIBUTION_2D_H
29
30#include <shark/LinAlg/Base.h>
32
33#include <algorithm>
34#include <vector>
35
36namespace shark{
37/// \brief Finds the smallest/largest Contributors given 2D points
38///
39/// The algorithm sorts the points by their first coordinate and then
40/// calculates the volume of the hypervolume dominated by each Pointseparately
41/// returning the index of the elements with the minimum/maximum contribution.
43private:
44 struct Point{
45 Point(){}
46
47 Point(double f1, double f2, std::size_t index)
48 : f1(f1)
49 , f2(f2)
50 , index(index)
51 {}
52
53 bool operator<(Point const& rhs) const{//for lexicographic sorting
54 if (f1 < rhs.f1) return true;
55 if (f1 > rhs.f1) return false;
56 return (f2 < rhs.f2);
57 }
58
59 double f1;
60 double f2;
61 std::size_t index;
62 };
63
64 ///\brief Stores the k elements with the best contribution(highest,lowest) as indicated by comparator
65 ///
66 /// The algorithm returns the indizes of the front front[i].index in order of contribution.
67 /// The input is a set of points sorted by x-value. the edge-points are never selected.
68 ///
69 /// This is implemented by using a min-heap that stores the k best elements,
70 /// but having the smallest element on top so that we can quickly decide which
71 /// element to remove.
72 template<class Comparator>
73 std::vector<KeyValuePair<double,std::size_t> > bestContributors( std::vector<Point> const& front, std::size_t k, Comparator comp)const{
74
75 std::vector<KeyValuePair<double,std::size_t> > bestK(k+1);
76 auto heapStart = bestK.begin();
77 auto heapEnd = bestK.begin();
78
79 auto pointComp = [&](KeyValuePair<double,std::size_t> const& lhs, KeyValuePair<double,std::size_t> const& rhs){return comp(lhs.key,rhs.key);};
80
81 //compute the hypervalue contribution for each Pointexcept the endpoints;
82 for(std::size_t i = 1; i < front.size()-1;++i){
83 double contribution = (front[i+1].f1 - front[i].f1)*(front[i-1].f2 - front[i].f2);
84 *heapEnd = makeKeyValuePair(contribution,front[i].index);
85 ++heapEnd;
86 std::push_heap(heapStart,heapEnd,pointComp);
87
88 if(heapEnd == bestK.end()){
89 std::pop_heap(heapStart,heapEnd,pointComp);
90 --heapEnd;
91 }
92 }
93 std::sort_heap(heapStart,heapEnd,pointComp);
94 bestK.pop_back();//remove the k+1th element
95 return bestK;
96 }
97public:
98 /// \brief Returns the index of the points with smallest contribution.
99 ///
100 /// \param [in] points The set \f$S\f$ of points from which to select the smallest contributor.
101 /// \param [in] k The number of points to select.
102 /// \param [in] referencePoint The reference Point\f$\vec{r} \in \mathbb{R}^2\f$ for the hypervolume calculation, needs to fulfill: \f$ \forall s \in S: s \preceq \vec{r}\f$.
103 template<typename Set, typename VectorType>
104 std::vector<KeyValuePair<double,std::size_t> > smallest( Set const& points, std::size_t k, VectorType const& referencePoint)const{
105 SHARK_RUNTIME_CHECK(points.size() >= k, "There must be at least k points in the set");
106 std::vector<Point> front;
107 front.emplace_back(0,referencePoint[1],points.size()+1);//add reference point
108 for(std::size_t i = 0; i != points.size(); ++i)
109 front.emplace_back(points[i][0],points[i][1],i);
110 front.emplace_back(referencePoint[0],0,points.size()+1);//add reference point
111 std::sort(front.begin()+1,front.end()-1);
112
113 return bestContributors(front,k,[](double con1, double con2){return con1 < con2;});
114 }
115
116 /// \brief Returns the index of the points with smallest contribution.
117 ///
118 /// As no reference point is given, the edge points can not be computed and are not selected.
119 ///
120 /// \param [in] points The set \f$S\f$ of points from which to select the smallest contributor.
121 /// \param [in] k The number of points to select.
122 template<typename Set>
123 std::vector<KeyValuePair<double,std::size_t> > smallest( Set const& points, std::size_t k)const{
124 SHARK_RUNTIME_CHECK(points.size() >= k, "There must be at least k points in the set");
125 std::vector<Point> front;
126 for(std::size_t i = 0; i != points.size(); ++i)
127 front.emplace_back(points[i][0],points[i][1],i);
128 std::sort(front.begin(),front.end());
129
130 return bestContributors(front,k,[](double con1, double con2){return con1 < con2;});
131 }
132
133 /// \brief Returns the index of the points with largest contribution.
134 ///
135 /// \param [in] points The set \f$S\f$ of points from which to select the smallest contributor.
136 /// \param [in] k Number of points to select.
137 /// \param [in] referencePoint The reference Point\f$\vec{r} \in \mathbb{R}^2\f$ for the hypervolume calculation, needs to fulfill: \f$ \forall s \in S: s \preceq \vec{r}\f$.
138 template<typename Set, typename VectorType>
139 std::vector<KeyValuePair<double,std::size_t> > largest( Set const& points, std::size_t k, VectorType const& referencePoint)const{
140 SHARK_RUNTIME_CHECK(points.size() >= k, "There must be at least k points in the set");
141 std::vector<Point> front;
142 front.emplace_back(0,referencePoint[1],points.size()+1);//add reference point
143 for(std::size_t i = 0; i != points.size(); ++i)
144 front.emplace_back(points[i][0],points[i][1],i);
145 front.emplace_back(referencePoint[0],0,points.size()+1);//add reference point
146 std::sort(front.begin()+1,front.end()-1);
147
148 return bestContributors(front,k,[](double con1, double con2){return con1 > con2;});
149 }
150
151 /// \brief Returns the index of the points with largest contribution.
152 ///
153 /// As no reference point is given, the edge points can not be computed and are not selected.
154 ///
155 /// \param [in] points The set \f$S\f$ of points from which to select the smallest contributor.
156 /// \param [in] k The number of points to select.
157 template<typename Set>
158 std::vector<KeyValuePair<double,std::size_t> > largest( Set const& points, std::size_t k)const{
159 SHARK_RUNTIME_CHECK(points.size() >= k, "There must be at least k points in the set");
160 std::vector<Point> front;
161 for(std::size_t i = 0; i != points.size(); ++i)
162 front.emplace_back(points[i][0],points[i][1],i);
163 std::sort(front.begin(),front.end());
164
165 return bestContributors(front,k,[](double con1, double con2){return con1 > con2;});
166 }
167
168};
169
170}
171#endif