HardClusteringModel.h
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief Model for "hard" clustering.
6 *
7 *
8 *
9 * \author T. Glasmachers
10 * \date 2011
11 *
12 *
13 * \par Copyright 1995-2017 Shark Development Team
14 *
15 * <BR><HR>
16 * This file is part of Shark.
17 * <https://shark-ml.github.io/Shark/>
18 *
19 * Shark is free software: you can redistribute it and/or modify
20 * it under the terms of the GNU Lesser General Public License as published
21 * by the Free Software Foundation, either version 3 of the License, or
22 * (at your option) any later version.
23 *
24 * Shark is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU Lesser General Public License for more details.
28 *
29 * You should have received a copy of the GNU Lesser General Public License
30 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
31 *
32 */
33//===========================================================================
34
35#ifndef SHARK_MODELS_CLUSTERING_HARDCLUSTERINGMODEL_H
36#define SHARK_MODELS_CLUSTERING_HARDCLUSTERINGMODEL_H
37
39
40namespace shark {
41
42
43///
44/// \brief Model for "hard" clustering.
45///
46/// \par
47/// The HardClusteringModel is based on an \ref clustering
48/// object. Given an input, the model outputs the index of the
49/// best matching cluster.
50///
51/// \par
52/// See also SoftClusteringModel for general cluster membership.
53/// \ingroup clustering
54template <class InputT>
55class HardClusteringModel : public ClusteringModel<InputT, unsigned int>
56{
59public:
64
65
66 /// Constructor
68 : base_type(clustering){
69 }
70
71 /// \brief From INameable: return the class name.
72 std::string name() const
73 { return "HardClusteringModel"; }
74
75 using ClusteringModel<InputT, unsigned int>::eval;
76
78 return this->mep_clustering->inputShape();
79 }
81 return this->mep_clustering->numberOfClusters();
82 }
83
84 /// \brief Compute best matching cluster.
85 ///
86 /// \par
87 /// The actual computation is redirected to the clustering object.
88 void eval(InputType const & pattern, OutputType& output)const{
89 output = this->mep_clustering->hardMembership(pattern);
90 }
91
92 /// \brief Compute best matching cluster for a batch of inputs.
93 ///
94 /// \par
95 /// The actual computation is redirected to the clustering object.
96 void eval(BatchInputType const & patterns, BatchOutputType& outputs)const{
97 outputs = this->mep_clustering->hardMembership(patterns);
98 }
99};
100
101
102}
103#endif