Shark machine learning library
Installation
Tutorials
Benchmarks
Documentation
Quick references
Class list
Global functions
include
shark
Algorithms
StoppingCriteria
GeneralizationQuotient.h
Go to the documentation of this file.
1
/*!
2
*
3
*
4
* \brief Stopping criterion monitoring the quotient of generalization loss and training progress
5
*
6
*
7
*
8
* \author O. Krause
9
* \date 2010
10
*
11
*
12
* \par Copyright 1995-2017 Shark Development Team
13
*
14
* <BR><HR>
15
* This file is part of Shark.
16
* <https://shark-ml.github.io/Shark/>
17
*
18
* Shark is free software: you can redistribute it and/or modify
19
* it under the terms of the GNU Lesser General Public License as published
20
* by the Free Software Foundation, either version 3 of the License, or
21
* (at your option) any later version.
22
*
23
* Shark is distributed in the hope that it will be useful,
24
* but WITHOUT ANY WARRANTY; without even the implied warranty of
25
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26
* GNU Lesser General Public License for more details.
27
*
28
* You should have received a copy of the GNU Lesser General Public License
29
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
30
*
31
*/
32
33
#ifndef SHARK_TRAINERS_STOPPINGCRITERA_GENERALIZATION_QUOTIENT__H
34
#define SHARK_TRAINERS_STOPPINGCRITERA_GENERALIZATION_QUOTIENT__H
35
36
#include "
AbstractStoppingCriterion.h
"
37
#include <
shark/Core/ResultSets.h
>
38
#include <queue>
39
#include <numeric>
40
#include <algorithm>
41
#include <
shark/LinAlg/Base.h
>
42
namespace
shark
{
43
44
45
/// \brief SStopping criterion monitoring the quotient of generalization loss and training progress
46
///
47
/// The GeneralizationQuotient is, as the name suggests, a quotient of two other stopping criteria,
48
/// namely the generalization loss and the
49
///
50
///
51
///
52
///
53
///
54
55
56
/// This stopping criterion is based on the empirical fact that the generalization error does not have a smooth surface.
57
/// It is normal that during periods of fast learning the generalization loss might increase first and than decrease again.
58
/// This class calculates the quotient of training progress and generalization loss. It stops if it is bigger than
59
/// maxloss > 0.
60
61
///
62
/// Terminology for this and other stopping criteria is taken from (and also see):
63
///
64
/// Lutz Prechelt. Early Stopping - but when? In Genevieve B. Orr and
65
/// Klaus-Robert Müller: Neural Networks: Tricks of the Trade, volume
66
/// 1524 of LNCS, Springer, 1997.
67
///
68
template
<
class
Po
int
Type = RealVector>
69
class
GeneralizationQuotient
:
public
AbstractStoppingCriterion
< ValidatedSingleObjectiveResultSet<PointType> >{
70
private
:
71
typedef
AbstractStoppingCriterion< ValidatedSingleObjectiveResultSet<PointType>
>
super
;
72
public
:
73
typedef
ValidatedSingleObjectiveResultSet<PointType>
ResultSet
;
74
75
GeneralizationQuotient
(std::size_t intervalSize,
double
maxLoss){
76
SHARK_ASSERT
( intervalSize > 0 );
77
m_maxLoss
= maxLoss;
78
m_intervalSize
= intervalSize;
79
reset
();
80
}
81
/// returns true if training should stop
82
bool
stop
(
ResultSet
const
& set){
83
m_minTraining
= std::min(
m_minTraining
, set.
value
);
84
double
gl = set.
validation
/
m_minTraining
-1;
85
86
m_meanPerformance
+= set.
value
/
m_intervalSize
;
87
m_interval
.push(set.
value
/
m_intervalSize
);
88
89
if
(
m_interval
.size() >
m_intervalSize
){
90
m_meanPerformance
-=
m_interval
.front();
91
m_interval
.pop();
92
}
93
else
94
return
false
;
95
double
progress = (
m_meanPerformance
/
m_minTraining
)-1;
96
97
return
gl/progress >
m_maxLoss
;
98
}
99
void
reset
(){
100
m_interval
= std::queue<double>();
101
m_minTraining
= std::numeric_limits<double>::max();
102
m_meanPerformance
= 0;
103
}
104
protected
:
105
double
m_minTraining
;
106
double
m_maxLoss
;
107
double
m_meanPerformance
;
108
109
std::queue<double>
m_interval
;
110
std::size_t
m_intervalSize
;
111
};
112
}
113
114
115
#endif