GaussianKernelMatrix.h
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief Efficient special case if the kernel is gaussian and the inputs are sparse vectors
6 *
7 *
8 * \par
9 *
10 *
11 *
12 * \author T. Glasmachers
13 * \date 2007-2012
14 *
15 *
16 * \par Copyright 1995-2017 Shark Development Team
17 *
18 * <BR><HR>
19 * This file is part of Shark.
20 * <https://shark-ml.github.io/Shark/>
21 *
22 * Shark is free software: you can redistribute it and/or modify
23 * it under the terms of the GNU Lesser General Public License as published
24 * by the Free Software Foundation, either version 3 of the License, or
25 * (at your option) any later version.
26 *
27 * Shark is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public License
33 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
34 *
35 */
36//===========================================================================
37
38
39#ifndef SHARK_LINALG_GAUSSIANKERNELMATRIX_H
40#define SHARK_LINALG_GAUSSIANKERNELMATRIX_H
41
42#include <shark/Data/Dataset.h>
43#include <shark/LinAlg/Base.h>
44
45#include <vector>
46#include <cmath>
47
48
49namespace shark {
50
51
52///\brief Efficient special case if the kernel is Gaussian and the inputs are sparse vectors
53template <class T, class CacheType>
55{
56public:
57
58 typedef CacheType QpFloatType;
59 typedef T InputType;
60
61 /// Constructor
62 /// \param gamma bandwidth parameter of Gaussian kernel
63 /// \param data data evaluated by the kernel function
65 double gamma,
66 Data<InputType> const& data
67 )
68 : m_squaredNorms(data.numberOfElements())
69 , m_gamma(gamma)
70 , m_accessCounter( 0 )
71 {
72 std::size_t elements = data.numberOfElements();
73 x.resize(elements);
74 PointerType iter=data.elements().begin();
75 for(std::size_t i = 0; i != elements; ++i,++iter){
76 x[i]=iter;
77 m_squaredNorms(i) =inner_prod(*x[i],*x[i]);//precompute the norms
78 }
79 }
80
81 /// return a single matrix entry
82 QpFloatType operator () (std::size_t i, std::size_t j) const
83 { return entry(i, j); }
84
85 /// return a single matrix entry
86 QpFloatType entry(std::size_t i, std::size_t j) const
87 {
89 double distance = m_squaredNorms(i)-2*inner_prod(*x[i], *x[j])+m_squaredNorms(j);
90 return (QpFloatType)std::exp(- m_gamma * distance);
91 }
92
93 /// \brief Computes the i-th row of the kernel matrix.
94 ///
95 ///The entries start,...,end of the i-th row are computed and stored in storage.
96 ///There must be enough room for this operation preallocated.
97 void row(std::size_t i, std::size_t start,std::size_t end, QpFloatType* storage) const
98 {
99 typename ConstProxyReference<T>::type xi = *x[i];
100 m_accessCounter +=end-start;
101 SHARK_PARALLEL_FOR(int j = start; j < (int) end; j++)
102 {
103 double distance = m_squaredNorms(i)-2*inner_prod(xi, *x[j])+m_squaredNorms(j);
104 storage[j-start] = std::exp(- m_gamma * distance);
105 }
106 }
107
108 /// \brief Computes the kernel-matrix
109 template<class M>
110 void matrix(
111 blas::matrix_expression<M, blas::cpu_tag> & storage
112 ) const{
113 for(std::size_t i = 0; i != size(); ++i){
114 row(i,0,size(),&storage()(i,0));
115 }
116 }
117
118 /// swap two variables
119 void flipColumnsAndRows(std::size_t i, std::size_t j){
120 using std::swap;
121 swap(x[i],x[j]);
123 }
124
125 /// return the size of the quadratic matrix
126 std::size_t size() const
127 { return x.size(); }
128
129 /// query the kernel access counter
130 unsigned long long getAccessCount() const
131 { return m_accessCounter; }
132
133 /// reset the kernel access counter
136
137protected:
138
139 //~ typedef blas::sparse_vector_adaptor<typename T::value_type const,std::size_t> PointerType;
141 /// Array of data pointers for kernel evaluations
142 std::vector<PointerType> x;
143
144 RealVector m_squaredNorms;
145
146 double m_gamma;
147
148 /// counter for the kernel accesses
149 mutable unsigned long long m_accessCounter;
150};
151
152}
153#endif