Discus.h
Go to the documentation of this file.
1/*!
2 *
3 *
4 * \brief Convex quadratic benchmark function.
5 *
6 *
7 * \author -
8 * \date 2010-2011
9 *
10 *
11 * \par Copyright 1995-2017 Shark Development Team
12 *
13 * <BR><HR>
14 * This file is part of Shark.
15 * <https://shark-ml.github.io/Shark/>
16 *
17 * Shark is free software: you can redistribute it and/or modify
18 * it under the terms of the GNU Lesser General Public License as published
19 * by the Free Software Foundation, either version 3 of the License, or
20 * (at your option) any later version.
21 *
22 * Shark is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU Lesser General Public License for more details.
26 *
27 * You should have received a copy of the GNU Lesser General Public License
28 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
29 *
30 */
31#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_DISCUS_H
32#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_DISCUS_H
33
35#include <shark/Core/Random.h>
36
37namespace shark {namespace benchmarks{
38/**
39 * \brief Convex quadratic benchmark function.
40 * \ingroup benchmarks
41 */
43
44 Discus(std::size_t numberOfVariables = 5,double alpha = 1.E-3) : m_alpha(alpha) {
47 m_numberOfVariables = numberOfVariables;
48 }
49
50 /// \brief From INameable: return the class name.
51 std::string name() const
52 { return "Discus"; }
53
54 std::size_t numberOfVariables()const{
55 return m_numberOfVariables;
56 }
57
59 return true;
60 }
61
62 /// \brief Adjusts the number of variables if the function is scalable.
63 /// \param [in] numberOfVariables The new dimension.
65 m_numberOfVariables = numberOfVariables;
66 }
67
69 RealVector x(numberOfVariables());
70
71 for (std::size_t i = 0; i < x.size(); i++) {
72 x(i) = random::uni(*mep_rng, 0,1);
73 }
74 return x;
75 }
76
77 double eval(SearchPointType const& p) const {
79 double sum = sqr(p(0));
80 for (std::size_t i = 1; i < p.size(); i++)
81 sum += m_alpha * sqr(p(i));
82
83 return sum;
84 }
85 double evalDerivative(SearchPointType const& p, FirstOrderDerivative & derivative ) const {
86 derivative.resize(p.size());
87 noalias(derivative) = (2 * m_alpha) * p;
88 derivative(0) = 2 * p(0);
89 return eval(p);
90 }
91
92 double alpha() const {
93 return m_alpha;
94 }
95
96 void setAlpha(double alpha) {
97 m_alpha = alpha;
98 }
99
100private:
101 double m_alpha;
102 std::size_t m_numberOfVariables;
103};
104}}
105
106#endif