DTLZ7.h
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief Objective function DTLZ7
6 *
7 *
8 *
9 * \author T.Voss, T. Glasmachers, O.Krause
10 * \date 2010-2011
11 *
12 *
13 * \par Copyright 1995-2017 Shark Development Team
14 *
15 * <BR><HR>
16 * This file is part of Shark.
17 * <https://shark-ml.github.io/Shark/>
18 *
19 * Shark is free software: you can redistribute it and/or modify
20 * it under the terms of the GNU Lesser General Public License as published
21 * by the Free Software Foundation, either version 3 of the License, or
22 * (at your option) any later version.
23 *
24 * Shark is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU Lesser General Public License for more details.
28 *
29 * You should have received a copy of the GNU Lesser General Public License
30 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
31 *
32 */
33//===========================================================================
34#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ7_H
35#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ7_H
36
39
40namespace shark {namespace benchmarks{
41/**
42* \brief Implements the benchmark function DTLZ7.
43*
44* See: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.7531&rep=rep1&type=pdf
45* The benchmark function exposes the following features:
46* - Scalable w.r.t. the searchspace and w.r.t. the objective space.
47* - Disconnected Pareto front.
48* \ingroup benchmarks
49*/
51{
52 DTLZ7(std::size_t numVariables = 0) : m_objectives(2), m_handler(numVariables,0,1 ){
53 announceConstraintHandler(&m_handler);
54 }
55
56 /// \brief From INameable: return the class name.
57 std::string name() const
58 { return "DTLZ7"; }
59
60 std::size_t numberOfObjectives()const{
61 return m_objectives;
62 }
64 return true;
65 }
67 m_objectives = numberOfObjectives;
68 }
69
70 std::size_t numberOfVariables()const{
71 return m_handler.dimensions();
72 }
73
75 return true;
76 }
77
78 /// \brief Adjusts the number of variables if the function is scalable.
79 /// \param [in] numberOfVariables The new dimension.
86
87 ResultType eval( const SearchPointType & x ) const {
89
90 RealVector value( numberOfObjectives() );
91
92 std::size_t k = numberOfVariables() - numberOfObjectives() + 1 ;
93 double g = 0.0 ;
94 for (std::size_t i = numberOfVariables() - k + 1; i <= numberOfVariables(); i++)
95 g += x(i-1);
96
97 g = 1 + 9 * g / k;
98
99 for (std::size_t i = 0; i != numberOfObjectives(); i++)
100 value[i] = x(i);
101
102 double h = 0.0 ;
103 for (std::size_t j = 1; j <= numberOfObjectives() - 1; j++)
104 h += x(j-1) / (1 + g) * ( 1 + std::sin( 3 * M_PI * x(j-1) ) );
105
106 h = numberOfObjectives() - h ;
107
108 value[numberOfObjectives()-1] = (1 + g) * h;
109
110 return value;
111 }
112
113private:
114 std::size_t m_objectives;
116
117};
118
119}}
120#endif