DTLZ6.h
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief Objective function DTLZ6
6 *
7 *
8 *
9 * \author T.Voss, T. Glasmachers, O.Krause
10 * \date 2010-2011
11 *
12 *
13 * \par Copyright 1995-2017 Shark Development Team
14 *
15 * <BR><HR>
16 * This file is part of Shark.
17 * <https://shark-ml.github.io/Shark/>
18 *
19 * Shark is free software: you can redistribute it and/or modify
20 * it under the terms of the GNU Lesser General Public License as published
21 * by the Free Software Foundation, either version 3 of the License, or
22 * (at your option) any later version.
23 *
24 * Shark is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU Lesser General Public License for more details.
28 *
29 * You should have received a copy of the GNU Lesser General Public License
30 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
31 *
32 */
33//===========================================================================
34#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ6_H
35#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ6_H
36
39
40namespace shark {namespace benchmarks{
41/**
42* \brief Implements the benchmark function DTLZ6.
43*
44* See: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.7531&rep=rep1&type=pdf
45* The benchmark function exposes the following features:
46* - Scalable w.r.t. the searchspace and w.r.t. the objective space.
47* - Highly multi-modal.
48* \ingroup benchmarks
49*/
51{
52 DTLZ6(std::size_t numVariables = 0) : m_objectives(2), m_handler(SearchPointType(numVariables,0),SearchPointType(numVariables,1) ){
53 announceConstraintHandler(&m_handler);
54 }
55
56 /// \brief From INameable: return the class name.
57 std::string name() const
58 { return "DTLZ6"; }
59
60 std::size_t numberOfObjectives()const{
61 return m_objectives;
62 }
64 return true;
65 }
67 m_objectives = numberOfObjectives;
68 }
69
70 std::size_t numberOfVariables()const{
71 return m_handler.dimensions();
72 }
73
75 return true;
76 }
77
78 /// \brief Adjusts the number of variables if the function is scalable.
79 /// \param [in] numberOfVariables The new dimension.
86
87 ResultType eval( const SearchPointType & x ) const {
89
91
92 std::vector<double> phi(numberOfObjectives());
93
94 std::size_t k = numberOfVariables() - numberOfObjectives() + 1 ;
95 double g = 0.0 ;
96
97 for (std::size_t i = numberOfVariables() - k + 1; i <= numberOfVariables(); i++)
98 g += std::pow(x(i-1), 0.1);
99
100 double t = M_PI / (4 * (1 + g));
101
102 phi[0] = x(0) * M_PI / 2;
103 for (std::size_t i = 2; i <= numberOfObjectives() - 1; i++)
104 phi[i-1] = t * (1 + 2 * g * x(i-1) );
105
106 for (std::size_t i = 1; i <= numberOfObjectives(); i++)
107 {
108 double f = (1 + g);
109
110 for (std::size_t j = numberOfObjectives() - i; j >= 1; j--)
111 f *= std::cos(phi[j-1]);
112
113 if (i > 1)
114 f *= std::sin(phi[(numberOfObjectives() - i + 1) - 1]);
115
116 value[i-1] = f ;
117 }
118
119 return( value );
120 }
121
122private:
123 std::size_t m_objectives;
125};
126}}
127#endif