ConstrainedSphere.h
Go to the documentation of this file.
1/*!
2 *
3 *
4 * \brief Convex quadratic benchmark function.
5 *
6 *
7 * \author T. Voss
8 * \date 2010-2011
9 *
10 *
11 * \par Copyright 1995-2017 Shark Development Team
12 *
13 * <BR><HR>
14 * This file is part of Shark.
15 * <https://shark-ml.github.io/Shark/>
16 *
17 * Shark is free software: you can redistribute it and/or modify
18 * it under the terms of the GNU Lesser General Public License as published
19 * by the Free Software Foundation, either version 3 of the License, or
20 * (at your option) any later version.
21 *
22 * Shark is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU Lesser General Public License for more details.
26 *
27 * You should have received a copy of the GNU Lesser General Public License
28 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
29 *
30 */
31#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_CONSTRAINEDSPHERE_H
32#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_CONSTRAINEDSPHERE_H
33
35#include <shark/Core/Random.h>
36
37namespace shark {namespace benchmarks{
38/**
39 * \brief Constrained Sphere function
40 *
41 * This is a simple sphere function minimizing \f$ f(x) = \sum_i^N x_i^2-m \f$ under the constraints that
42 * \f$ x_i \geq 1\f$ for \f$ i = 1,\dots,m \f$. The minimum is at \f$ x_1=\dots = x_m = 1\f$ and
43 * \f$ x_{m+1}=\dots = x_N = 0 \f$ with function value 0.
44 *
45 * This is a simple benchmark for evolutionary algorithms as, the closer the algorithm is to the optimum
46* \ingroup benchmarks
47 */
49
50 ConstrainedSphere(std::size_t numberOfVariables = 5, std::size_t m = 1)
51 :m_numberOfVariables(numberOfVariables), m_constraints(m) {
55 }
56
57 /// \brief From INameable: return the class name.
58 std::string name() const
59 { return "ConstrainedSphere"; }
60
61 std::size_t numberOfVariables()const{
62 return m_numberOfVariables;
63 }
64
66 return true;
67 }
68
70 m_numberOfVariables = numberOfVariables;
71 }
72
74 RealVector x(numberOfVariables());
75
76 for (std::size_t i = 0; i < m_constraints; i++) {
77 x(i) = std::abs(random::gauss(*mep_rng, 0, 1))+1;
78 }
79 for (std::size_t i = m_constraints; i < x.size(); i++) {
80 x(i) = random::gauss(*mep_rng,0, 1);
81 }
82 return x;
83 }
84
85 bool isFeasible( SearchPointType const& input) const {
86 for (std::size_t i = 0; i < m_constraints; i++) {
87 if(input(i) < 1) return false;
88 }
89 return true;
90 }
91
92 double eval(const SearchPointType &p) const {
94 return norm_sqr(p)-m_constraints;
95 }
96private:
97 std::size_t m_numberOfVariables;
98 std::size_t m_constraints;
99};
100
101}}
102
103#endif