Shark machine learning library
Installation
Tutorials
Benchmarks
Documentation
Quick references
Class list
Global functions
include
shark
ObjectiveFunctions
Benchmarks
Cigar.h
Go to the documentation of this file.
1
/*!
2
*
3
*
4
* \brief Convex quadratic benchmark function with single dominant axis
5
6
*
7
*
8
* \author -
9
* \date -
10
*
11
*
12
* \par Copyright 1995-2017 Shark Development Team
13
*
14
* <BR><HR>
15
* This file is part of Shark.
16
* <https://shark-ml.github.io/Shark/>
17
*
18
* Shark is free software: you can redistribute it and/or modify
19
* it under the terms of the GNU Lesser General Public License as published
20
* by the Free Software Foundation, either version 3 of the License, or
21
* (at your option) any later version.
22
*
23
* Shark is distributed in the hope that it will be useful,
24
* but WITHOUT ANY WARRANTY; without even the implied warranty of
25
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26
* GNU Lesser General Public License for more details.
27
*
28
* You should have received a copy of the GNU Lesser General Public License
29
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
30
*
31
*/
32
#ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_CIGAR_H
33
#define SHARK_OBJECTIVEFUNCTIONS_BENCHMARKS_CIGAR_H
34
35
#include <
shark/ObjectiveFunctions/AbstractObjectiveFunction.h
>
36
#include <
shark/Core/Random.h
>
37
38
namespace
shark
{
namespace
benchmarks{
39
/**
40
* \brief Convex quadratic benchmark function with single dominant axis
41
* \ingroup benchmarks
42
*/
43
struct
Cigar
:
public
SingleObjectiveFunction
{
44
45
Cigar
(std::size_t
numberOfVariables
= 5,
double
alpha
=1.E-3) : m_alpha(
alpha
) {
46
m_features
|=
CAN_PROPOSE_STARTING_POINT
;
47
m_features
|=
HAS_FIRST_DERIVATIVE
;
48
m_numberOfVariables =
numberOfVariables
;
49
}
50
51
/// \brief From INameable: return the class name.
52
std::string
name
()
const
53
{
return
"Cigar"
; }
54
55
std::size_t
numberOfVariables
()
const
{
56
return
m_numberOfVariables;
57
}
58
59
bool
hasScalableDimensionality
()
const
{
60
return
true
;
61
}
62
63
void
setNumberOfVariables
( std::size_t
numberOfVariables
){
64
m_numberOfVariables =
numberOfVariables
;
65
}
66
67
SearchPointType
proposeStartingPoint
()
const
{
68
RealVector x(
numberOfVariables
());
69
70
for
(std::size_t i = 0; i < x.size(); i++) {
71
x(i) =
random::uni
(*
mep_rng
, 0, 1);
72
}
73
return
x;
74
}
75
76
double
eval
(
const
SearchPointType
&p)
const
{
77
m_evaluationCounter
++;
78
79
double
sum = m_alpha *
sqr
(p(0));
80
for
(std::size_t i = 1; i < p.size(); i++)
81
sum +=
sqr
(p(i));
82
83
return
sum;
84
}
85
double
evalDerivative
(
SearchPointType
const
& p,
FirstOrderDerivative
& derivative )
const
{
86
derivative.resize(p.size());
87
noalias(derivative) = 2* p;
88
derivative(0) = 2 * m_alpha * p(0);
89
return
eval
(p);
90
}
91
92
double
alpha
()
const
{
93
return
m_alpha;
94
}
95
96
void
setAlpha
(
double
alpha
) {
97
m_alpha =
alpha
;
98
}
99
100
private
:
101
double
m_alpha;
102
std::size_t m_numberOfVariables;
103
};
104
}}
105
106
#endif
// SHARK_EA_CIGAR_H