BlockMatrix2x2.h
Go to the documentation of this file.
1//===========================================================================
2/*!
3 *
4 *
5 * \brief Kernel matrix for SVM regression.
6 *
7 *
8 * \par
9 *
10 *
11 *
12 * \author T. Glasmachers
13 * \date 2007-2012
14 *
15 *
16 * \par Copyright 1995-2017 Shark Development Team
17 *
18 * <BR><HR>
19 * This file is part of Shark.
20 * <https://shark-ml.github.io/Shark/>
21 *
22 * Shark is free software: you can redistribute it and/or modify
23 * it under the terms of the GNU Lesser General Public License as published
24 * by the Free Software Foundation, either version 3 of the License, or
25 * (at your option) any later version.
26 *
27 * Shark is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public License
33 * along with Shark. If not, see <http://www.gnu.org/licenses/>.
34 *
35 */
36//===========================================================================
37
38
39#ifndef SHARK_LINALG_BLOCKMATRIX2X2_H
40#define SHARK_LINALG_BLOCKMATRIX2X2_H
41
42#include <shark/Data/Dataset.h>
43#include <shark/LinAlg/Base.h>
44
45#include <vector>
46#include <cmath>
47
48
49namespace shark {
50
51
52///
53/// \brief SVM regression matrix
54///
55/// \par
56/// The BlockMatrix2x2 class is a \f$ 2n \times 2n \f$ block matrix of the form<br>
57/// &nbsp;&nbsp;&nbsp; \f$ \left( \begin{array}{lr} M & M \\ M & M \end{array} \right) \f$ <br>
58/// where M is an \f$ n \times n \f$ matrix.
59/// This matrix form is needed in SVM regression problems.
60///
61template <class Matrix>
63{
64public:
65 typedef typename Matrix::QpFloatType QpFloatType;
66
67 /// Constructor.
68 /// \param base underlying matrix M, see class description of BlockMatrix2x2.
69 BlockMatrix2x2(Matrix* base)
70 {
71 m_base = base;
72
73 m_mapping.resize(size());
74
75 std::size_t ic = m_base->size();
76 for (std::size_t i = 0; i < ic; i++)
77 {
78 m_mapping[i] = i;
79 m_mapping[i + ic] = i;
80 }
81 }
82
83
84 /// return a single matrix entry
85 QpFloatType operator () (std::size_t i, std::size_t j) const
86 { return entry(i, j); }
87
88 /// return a single matrix entry
89 QpFloatType entry(std::size_t i, std::size_t j) const
90 {
91 return m_base->entry(m_mapping[i], m_mapping[j]);
92 }
93
94 /// \brief Computes the i-th row of the kernel matrix.
95 ///
96 ///The entries start,...,end of the i-th row are computed and stored in storage.
97 ///There must be enough room for this operation preallocated.
98 void row(std::size_t i, std::size_t start,std::size_t end, QpFloatType* storage) const{
99 for(std::size_t j = start; j < end; j++){
100 storage[j-start] = m_base->entry(m_mapping[i], m_mapping[j]);
101 }
102 }
103
104 /// \brief Computes the kernel-matrix
105 template<class M>
106 void matrix(
107 blas::matrix_expression<M, blas::cpu_tag> & storage
108 ) const{
109 for(std::size_t i = 0; i != size(); ++i){
110 for(std::size_t j = 0; j != size(); ++j){
111 storage()(i,j) = entry(i,j);
112 }
113 }
114 }
115
116 /// swap two variables
117 void flipColumnsAndRows(std::size_t i, std::size_t j)
118 {
119 std::swap(m_mapping[i], m_mapping[j]);
120 }
121
122 /// return the size of the quadratic matrix
123 std::size_t size() const
124 { return 2 * m_base->size(); }
125
126protected:
127 /// underlying KernelMatrix object
128 Matrix* m_base;
129
130 /// coordinate permutation
131 std::vector<std::size_t> m_mapping;
132};
133
134}
135#endif